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Foreword

Th ese guidelines have been compiled by the members of the sub-project 1 of the 

PERFORMANCE Integrated Project. Th ey represent the culmination of 4 years work 

from 2006 to 2009, and bring together results of round robin testing, reviews and 

surveys, as well as the partner organisations’ extensive knowledge in this fi eld. Th e 

format adopted also refl ects the wishes expressed by PV module manufacturers in a 

survey conducted in 2008/2009. Th ese included:

 ● ... a clear and detailed guideline which explains a simple, practical and robust 

procedure for accurate measurements of PV Modules...

 ● ... how to obtain and conserve a good simulator measurement for a-Si mod-

ules, with several possibilities... which procedures have to be undertaken, which 

documents have to be delivered to avoid traceability issues

 ● ... useful for PV Industry, especially for newcomers...

 ● ... guidance indoor and outdoor measurement of thin fi lm modules... need to 

have a fl exible method that works for diff erent CIS modules (diff erent produc-

ers, diff erent production technologies).

We hope the sections below address these and other important issues. 

On behalf of the key contributors (in alphabetical order): 

E. Dunlop, JRC

F. Fabero, Ciemat

G. Friesen, SUPSI

W. Herrmann, TÜV Rheinland

J. Hohl-Ebinger, FhG ISE

H-D. Mohring, ZSW

H. Müllejans, JRC

A. Virtuani, SUPSI (formerly JRC)

W. Warta, FhG ISE

W. Zaaiman, JRC 

S. Zamini, AIT

Compiled by N. Taylor, JRC
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Symbols and Abbreviations

AM  air mass

a-Si  amphorous silicon

BCC  back-contact cell

CdTe  cadmium telluride

CIGS  copper-indium-gallium diselenide

CIS  copper indium diselenide (or sulphide)

CI(G)S  designation covering both CIS and CIGS technologies

c-Si  crystalline silicon

FF  fi ll factor

HIT  heterojunction with intrinsic thin layer

I
sc

  short-circuit current

μc-Si  micromorphous silicon

MJ  multijunction

MPP  maximum power point

P
max

  maximum power

PV  photovoltaic(s)

SR  spectral response

STC  standard test conditions

UC  uncertainty

V
oc

  open-circuit voltage
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1. Introduction

1.1  Scope

Energy output for photovoltaic devices is commonly related to the declared Watt 

peak value, i.e. the electrical performance under standard test conditions (STC): the 

reliability of this value and its associated uncertainty are of crucial importance to 

manufacturers, operators and investors. Such measurements are carried out either 

by industry and dedicated testing laboratories. To be valid, each measurement has to 

demonstrate an unbroken traceability chain to international primary standards and a 

calculation of measurement uncertainty for each transfer in the chain. Without either 

of the two, the measurement is purely indicative and has no legal value i.e. it would 

not be acceptable in any kind of dispute.

For crystalline silicon modules the industry has levels of uncertainty on maximum 

power typically ranging from 5 to 10%, while specialised testing laboratories achieve 

values from 2 to 3%. To put this in economic perspective, every 1% uncertainty on 

peak power corresponds to a value of over €1bn, assuming a world wide PV produc-

tion of 38 GW in 2010 and a nominal module price of 3€/ Wp.

Th e PERFORMANCE Sub-Project 1 was set up to address the issue characterisation 

of the power output of PV modules, with the following objectives:

 ● Transparency of traceability chain of indoor module measurements: (a) test 

labs, (b) industry

 ● Development of measurement procedures for new and emerging technolo-

gies (thin fi lm cells, multi-junction cells, back contact silicon cells, etc.)

 ● Improvement/harmonisation of precision and comparability of characterisa-

tion results

 ● 5% tolerance for output power labelling of PV modules in industry

Th ese guidelines directly address these objectives and aim to provide practical infor-

mation on best practices for implementing the requirements laid down in the exist-

ing international testing standards and for characterising emerging PV technologies 

for which as yet no standards exist. Th e work brings together the work of all four 

work packages in SP1, as well as refl ecting the extensive expertise and experience of 

the laboratories and organisations involved. 

Before addressing the technical issues which are at the core of these guidelines, the 

following three sections consider a) defi nitions, b) existing standards in this area and 

c) the results of a SP1 survey of industrial organisations performing power measure-

ments.
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1.2  Defi nitions

Standard Test Conditions (STC): total irradiance = 1000 Wm-2, device temperature 

= 25oC, reference spectral irradiance for air mass = 1.5 as defi ned by IEC 60904-3

Calibration Measurements: this refers exclusively to measurements made by an 

accredited testing laboratory to determine the absolute power output of a device 

(Pmax) at STC. Th e value obtained can be formally declared on a calibration certifi -

cate. To be valid, such measurements must demonstrate an unbroken traceability 

chain to international primary standards and include a calculation of measurement 

uncertainty.

Other Measurements: this category covers all measurements other than the Pmax 

calibrations and includes: 

 − power measurements made for comparative purposes e.g. for module qualifi ca-

tion

 − temperature coeffi  cient and spectral response measurements

 − measurements made to support energy rating models 

Th e quality of the data depends on the documented testing procedure and measure-

ment conditions. 

Uncertainty: Th e uncertainty or margin of error of a measurement is stated by giving 

a range of values including the likelihood to enclose the true value.

Accuracy: the accuracy of a measurement system is the degree of closeness of mea-

surements of a quantity to its actual (true) value. 

Repeatability: Repeatability (or precision) is the variation in measurements taken 

by a single person or instrument on the same item and under the same conditions. A 

measurement may be said to be repeatable when this variation is smaller than some 

agreed limit.

Traceability: Traceability requires the establishment of an unbroken chain of com-

parisons to stated SI references, each with a stated uncertainty.

1.3 Existing Standards

Over the last 29 years the International Electrotechnical Commission (IEC) has devel-

oped a comprehensive set of standards in particular for crystalline silicon devices 

and more recently also for some thin fi lm technologies. Th ere are currently ten stan-

dards (9 in the 60904 series and 60891) applicable to the components and processes 

involved in power measurements. Th ese are transposed into European norms via the 

European Committee for Electrotechnical Standardization CENELEC and then to 

national standards, keeping the same number (Fig. 1). Table 1 summarises the avail-

able standards relevant to power measurements, following the scheme in Fig. 2.
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European vote

IEC Standard   European EN Standard  National standard 

6 months (mandatory)

European Common Modifications (if so decided)

Standards keep the same number during this process

Figure 1: Procedure for the transposition of IEC standards to European 

and national levels.

Light source           EN 60904-2      EN 60904-4

Sun

EN 60904-3

EN 60904-9

Solar simulator

EN 60904-5   EN60904-8

Reference device

PV test device

EN 60904-10

EN 60904-7

EN 60904-1 EN 60891

Voltage

Figure 2 : Schematic of the standards relevant to power measurements 

(the IEC numbers are identical).
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Table 1: Standards relevant to PV power measurements

Scope Applicable EN (IEC) Standards Notes

Light source IEC 60904-3 Measurement principles 

for terrestrial photovoltaic solar devices 

with reference spectral irradiance data

Defi nes the standard spectrum 

for STC

IEC 60904-9 Solar simulator performance 

requirements

Defi nes the characteristics of 

the solar simulators into classes 

A, B or C relating to:

–  spectral distribution match

–  irradiance non uniformity on 

the test plane

–  temporal instability (STI and 

LTI)

Measurement procedures 

for these characteristics are 

included

Reference devices IEC 60904-2: Requirements for reference 

solar devices

Includes selection, construc-

tion details and recommended 

packaging depending on their 

use

IEC 60904-4: Procedure for establish-

ing the traceability of the calibration of 

reference solar devices

Includes diff erent calibration 

procedures to get traceabilty to 

SI units

Test and reference 

devices

IEC 60904-5: Determination of the 

equivalent cell temperature (ECT) of 

photovoltaic (PV) devices by the open-

circuit voltage method

Helps solve problem of determi-

nation of the temperature of a 

PV device

IEC 60904-8: Measurement of the 

spectral response of a photovoltaic (PV) 

device

Standard method for the 

determination of this basic 

characteristic

IEC 60904-10: Methods of linearity 

measurement 

Methods for determining 

the linearity of the electrical 

characteristics of PV devices vs. 

irradiance and temperature
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Scope Applicable EN (IEC) Standards Notes

Light source and PV 

devices

IEC 60904-7: Computation of the spectral 

mismatch correction for measurements 

of photovoltaic devices

Involved in the calculation are:

–  the experimental spectrum of 

the light source

–  the standard solar spectrum 

(EN 60904-3)

–  the spectral responses (abso-

lute or relative) of both test 

and reference PV devices

How to measure I-V 

curves

IEC 60904-1: Measurement of photovol-

taic current-voltage characteristics 

Standard methods for measur-

ing I-V curves, depending on 

the light source (natural or 

simulated: steady-state or 

pulsed solar simulator)

How to translate I-V 

curves

IEC 60891: Procedures for temperature 

and irradiance corrections to measured 

I-V characteristics of photovoltaic devices 

From experimental to targeted 

irradiance and temperature
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2. Survey of Current 
Practices

To help prepare these guidelines, the SP1 group conducted a survey of industrial 

practices for PV power measurement. Th e aim was both to assess current practices 

and to allow the potential “end-users” to indicate the areas in which guidance could 

be most benefi cial. Th e questionnaire was divided into 7 parts:

 ● Solar simulator used

 ● Other instrumentation

 ● Measurement Procedure

 ● Data Analysis

 ● Reference devices

 ● PV devices measured

 ● Documentation and Quality

It was distributed initially in autumn 2008 by EPIA to more than 100 industrial 

organisations. In addition the SP1 partners made direct contacts. Th is resulted in 

13 completed replies, which cover a wide range of common module types as shown in 

Fig. 3. Fig. 4 shows the distribution of annual production volumes. Th e geographical 

spread included companies based in Germany, Spain and Switzerland. Th e responses 

have been analysed and are presented in the following sections to give an overview of 

current practices. Th e confi dentially of the participants is respected and no company 

names are given.

c-Si poly

c-Si mono

C-Si poly + mono

TF a-Si

TF a-Si tandem

TF CIGS

TF various

2

2

5

1
1

1

1

Figure 3: Breakdown of module types covered in the survey of producers.
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> 50 MW

20-50 MW

10-20 MW

< 10 MW

0 1 2 3 4 5 6

No. of producers in this range

Figure 4 : Annual production volumes of the producers surveyed (2008/2009).

2.1  Solar Simulator and Other Instrumentation

Question Response

Solar simulator used 5 use Endeas 

4 use Berger

2 use Nisshinbo

1 uses Pasan

1 uses Halm

Type of Measurement (Pulsed or Continuous) All use pulsed (4 specify a decay pulse) 

3 use a 2 ms fl ash

9 use ≥ 10 ms 

N.B. The hin fi lm producers use pulse times from 10 

to 30 ms.

Simulator Classifi cation Spectral Match: 12 Class A; 1 no indication

Non-uniformity: 12 Class A, 1 Class B

Temperature stability: 12 Class A, 1 Class B

Measurement Area 9 in range 0.72 to 4 m²

1 of 7 m²

3 no answers
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Question Response

Interval of Simulator Classifi cation 8 state yearly

2 “other”

1 “no reply”

2 daily (question misunderstood?)

Loads 9 Electronic

4 Resistive. 

N.B. None explicitly mentioned 4 quadrant loads (8 

one quadrant, 5 no replies)

Connection All use Kelvin i.e. 4 wire, connection

Temperature sensor 6 PT100

2 LM35 

1 Thermometer 

1 PT1000

1 Infrared

1 thermocouple

1 unsure between PT100 and PT1000

Data acquisition 10 software from simulator manufacturer

1 own software 

2 “no replies”

Comments :

 ● “uniformity is checked every 2 weeks; other aspects are checked yearly by exter-

nal body”

 ● “the measuring device is calibrated every year by the simulator manufacturer 

and the Deutsche Kalibierdienst”

 ● “Uniformity is checked in detail during acceptance and then checked weekly 

roughly; spectrum: not checked; irradiance is checked weekly, but not to class A”.
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2.2  Measurement Procedure

Question Response

Time between lamination and measurement: 1 states 20 s

2 state 3-20 min

6 state “hours” 

2 state “days/week” 

Declared ambient temperature and accepted 

range [°C]

10 state 25°C, with a ranges from ± 2 °C to ± 10°C

1 states 22°C ± 2°C

1 states 23°C ± 5°C

Parameters monitored 

Device Temperature [°C]: 1 states 22°C ± 2°C

9 state 25°C ± 5°C

1 states 25°C ± 10°C 

1 states 30°C ± 5°C

Irradiance [W/m²]: 1 states 930 W/m² 

1 states 990 W/m² 

10 state 1000 W/m² 

1 states 1500 W/m² 

Sweep Technique All measure the full I-V curve during a single sweep 

Sweep Direction 11 state Isc->Voc

2 no replies

Sweep Duration 5 state 2 ms

5 state 10 ms

1 states 15 ms

NB The declared TF producers all state 10 ms

Sweep Data Acquisition All state I, V, H measured same time, but 5 explicitly 

state simultaneous recordings

Comments : 

 ● “light soak right before I-V measurement, with a delay of < 1 min”.

 ● “the device temperature depends on ambient temperature”.
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2.3  Data Analysis

Question Response

Corrections All use irradiance correction 

All use temperature correction

Only 2 use spectral correction

No common method and in some cases not specifi ed.

Methods mentioned:

2 use IEC 60891 for temperature

1 uses the Blässer method for irradiance and temperature 

correction

1 uses an ESTI sensor

1 uses an “optical assembly”

Basis for the correction Several mentioned valid sources (TÜV, ASU, JET, FhG-ISE, SUPSI)

1 stated the equipment operating manual

1 stated that it is programmed in the software

Extrapolating for I-V parameters? 4 do extrapolate (1 notes the use of fi tting and 1 of proprietary 

software)

Measurement uncertainty 8 stated “Calculated” 

2 stated “Ignored” 

3 “no reply”

Comments :

 ● “it would be very useful for industry to have a tool or procedure about how to 

calculate the uncertainty”.

 ● “uncertainty ignored at the moment; soon will be included in module classifi ca-

tion”.

 ● “covered by manufacturing tolerance”.

 ● “system calibrated against reference module from an accredited lab; calibration 

procedure carried out every working shift  – the diff erence in PMax is < 1%”
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2.4  Reference and Measured PV devices

Question Response

Reference Devices

Type 9 stated modules

1 stated cells

3 stated modules and cells

N.B. 10 use reference devices of the same type and size as the measured device. 

Frequency of Use Replies included:

– Once per shift

– After a pre-defi ned number of fl ashes (simultaneous recording of H??)

– “When necessary” (but no criteria given)

Traceability Most mentioned a specifi c accredited laboratory

2 answers were positive did not specify the source 

Stabilization 2 state “light exposure”

1 states “as defi ned in IEC61215”

1 states “outdoor, short circuit, 1 week”

1 states “outdoor, 1 week”

1 states “light soaking 30kW/m2”

1 states “outdoor, followed by indoor 1000 W/m² @ 50°C until delta 

Pmax < 2%”

1 states 40 hours partial stab?

Maintenance of 

contacts

5 “yes”

7 “no”

1 “no reply”

Transfer of calibra-

tion factor to other 

reference device

7 “No”

2 “Yes”, with 2 “no method mentioned” and 1 which stated “based on average 

Isc of 5 measurements”

Comments : 

TF producer: “At the moment we are only working with a fi ltered c-si reference cell, 

which is relatively well adapted to our a-Si module spectrum, and with a-ci ref module 

to check the daily stability of measurement. Further we have some relative stable a-Si 

modules, which are stored at the dark and taken out only once a month, but they are not 

fully stabilized. We are working on a better method …. 
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Question Response

Measured Devices

Storage Indoors

Stabilisation & 

Preconditioning

6 “No”

2 “Yes”, Light Soak , Outdoor

1 “No, We are looking to go to a good pre-conditioning”

Check for capacitive 

Eff ects

9 “no”

1 “yes” (sweeps in both directions for diff erent modules)

N.B. The yes is from a TF producer; the other 3 TF producers stated “no”.

2.5  Documentation and Quality

Question Response

Quality System 5 ISO 9001

4 Internal or not specifi ed

1 No

Accredited (yes/no/by whom) 8 “No”

2 “Yes” 

Measurement procedures and results Documented by all

Raw data & system confi guration Documented by all, except 1

Regular calibration of instruments and 

sensors 

11 “yes”

1 “no”

1 “no reply”

Measurement uncertainties documented 5 “yes” 

4 “no”

4 “no reply”

All personel trained and qualifi ed Yes for all, except 1 no reply

Participation to inter-comparisons 6 “yes”

5 “no”

1 “no reply”
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Comments

 ● Measurements instruments and sensors calibrated every 2 years.

 ● What is a acceptable calibration interval for the instruments?

 ● We are just going to absolute values from the simulator based on several ref-

erence devices measured by an institute. We are going to build up a quality 

system with validation of reference devices. We want to establish the exact 

absolute values at our simulator by letting several a-Si reference modules at 

an institute. Th ey will mainly be stored in the dark, and the daily controls 

will be done with a c-Si reference module. We then also want to exclude the 

measurement uncertainty.

2.6  Survey Conclusions

Th e main issues which emerged are as follows:

 ● Proper equipment: the classifi cation and calibration of the solar simulator, of 

reference devices and of other instrumentation e.g. temperature sensors and 

load, need to be properly checked and controlled.

 ● Know-how and operational competence in relation to the measurement pro-

cedure, data analysis and the PV devices measured; particular areas of con-

cern in this respect are uncertainty handling and checking of connections. 

 ● Adequate documentation and quality assurance.
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3. Equipment and Basis 
of Power Measurement

3.1  Solar simulators: requirements and limitations

Power measurements of PV modules in test laboratories and industry are usually per-

formed with fl ash-type solar simulators1 and are oft en referred to simply as indoor 

measurements. Th e advantages of are obvious:

Th e measurement is not dependent on weather conditions

A high reproducibility is achieved because test conditions can be adjusted to the 

desired ranges of module temperature and irradiance.

Th e nominal power of PV modules is defi ned as the maximum output power under 

standard test conditions (STC) according to IEC 60904-3. Measuring techniques for 

solar simulators are, therefore, aiming to measure as close as possible to these condi-

tions. However, solar simulators are not perfect light sources, and the quality of emit-

ted light can strongly infl uence the result of the power measurement. In particular, 

the following parameters must be considered:

Eff ective irradiance

Th e lamp power of the simulator must be adjustable to give 1 000 W/m² eff ective 

irradiance in order to keep the uncertainties from irradiance correction low. Up to 

now solar simulators have mainly been designed for power measurement of crystal-

line silicon PV modules. To achieve the same level of eff ective irradiance for other 

technologies may require a considerably diff erent lamp power.

Pulse length

Th e pulse length determines the I-V data acquisition time for power measurements. 

It is typically in the range of 2 ms to 10 ms. A longer pulse length may be required 

for some PV technologies to avoid possible transient capacitive eff ects resulting from 

high-speed measurement. Th is applies for example for c-Si modules with high-effi  -

ciency cells. Long-pulse and multi-fl ash measurement techniques are available to 

address the problem.

Spectral irradiance distribution of the lamp

Th e response of solar cells is strongly dependent on the wavelength. For solar simula-

tors in PV industry xenon light sources are normally used. Th e spectral irradiance of 

this lamp type diff ers considerably from AM1.5 spectral irradiance. As a result mea-

surement errors may occur if the PV reference device is not spectrally matched to the 

module to be measured. Moreover, spectral diff erences will cause so-called current 

mismatch between junctions in multi-junction PV modules. In such cases fi ltering 

methods must be applied in order to reduce measurement errors.

1  Here the discussion is restricted to fl ash-type simulators which are typically used for testing modules in industry; 

nonetheless many of the considerations are equally relevant to steady-state simulators used for characterising cells.
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Uniformity of irradiance in the test area

If a PV module is not uniformly illuminated, individual cells will deliver diff erent 

photocurrents. For series connected cells with high module currents in the range of 

Isc, cells with lower photocurrent will operate at negative voltage range on its reverse 

characteristic. Th is means a negative contribution to module voltage and a deforma-

tion of the I-V curve in comparison to the ideal case for uniform irradiation (Fig-

ure 5).

Module voltage  in V
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n

 A
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2.0

1.5

1.0

0.5

0.0
50 10 15 20 25

0%, 2%, 5%, 10%, 15%

Increasing non-uniformity:

Maximum power

Figure 5 : Eff ect of non-uniformity on I-V measurements: ISC decreases 

and FF increases with rising non-uniformity; maximum power is not aff ected 

if non-uniformity <5%.

Temporal instability of irradiance

During the I-V data acquisition sweep irradiance is normally not completely stable 

but subject to fl uctuations. As the photocurrent generation of cells follows these fl uc-

tuations, an irradiance correction of each I-V data point to the target irradiance level 

is required. Measurement errors related to irradiance correction are directly linked 

to the module parameters. Th erefore, exact knowledge of module I-V correction 

parameters  – such as internal series resistance  – is important to keep the correc-

tion uncertainties low. Against this background, the standard IEC 60904-9 defi nes a 

method for classifying solar simulators (Table 2), which includes three quality indi-

cators. Suppliers of solar simulators for PV power measurement must specify the 

respective class for each indicator (e.g. AAA).
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Table 2: Classifi cation of solar simulators for power measurement

ir
Non-uniformity of

radiance

Temporal stability
of emitted light
(LTI = Long Term 
Instability)

Quality indicator Methode

Monitoring of irradiance 
distribution in the test area. 
Calculation from measured
Min/Max values of irradiance

Classification

A B C

Ratio of irradiance contributions
of 6 wavelength ranges (400-500-
600-700-800-900-1100):
Solar simulator/AM 1.5 reference

0.75
to

1.25

0.6
to
1.4

0.4
to
2.0

<2 % <5% <10%

<0.5% <2 % <10%Monitoring of irradiance at a fixed 
position in the test area. 
Calculation from Min/Max values
during I-V data acquisition time

Spectral match to

AM 1.5 reference

spectral Irradiance

(IEC 60904-3)

Nowadays class AAA solar simulators are commercially available and several types 

have been qualifi ed by independent parties. Module manufacturers normally use 

data sheets as basis for their buying decision. Verifi cation measurement or assess-

ment of whether the technical specifi cations are met in operation is not common in 

industry, since it requires special measurement equipment and expertise (Figure 6). 

It is advisable to perform confi rmatory tests in the plant at least aft er installation.

For solar simulators used in PV module production lines, additional technical details 

to those given in the data sheet specifi cation are needed to guarantee stable quality of 

power measurement:

Th e uniformity of irradiance of a solar simulator is infl uenced by the test environ-

ment, such as dimensions of the test chamber or the internal refl ective conditions. 

Deviations from the standard test environment can lead to variations in the spatial 

uniformity of irradiance. Th erefore, any self-developments by a module manufac-

turer shall carefully be evaluated.

Solar simulator lamps age and need to be replaced aft er a certain time of operation. 

Th erefore operational-relevant characteristics such as spectral irradiance may change 

and should be checked so that appropriate corrections to the power measurement 

results can be made if needed. Furthermore, the radiation characteristics can diff er 

from lamp-to-lamp and may lead to variations in the irradiance uniformity in the 

test area.
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Evaluation result

Part of the test area 
to be evaluated
(module size)

Influence of 
reflections

Temporal
instability of pulse

Figure 6 : Example of the quality control equipment for checking the performance 

of solar simulators: above a special module with individually measured cells; 

below: soft ware output showing results of checks on temporal stability 

and uniformity (courtesy TÜV Rheinland)

Th e details given by the systems suppliers for irradiance non-uniformity are not suf-

fi cient for manufacturers who produce modules of diff erent sizes. Regarding this 

point, clear recommendations should be given by the systems suppliers.

Data tables for non-uniformity of irradiance and spectral irradiance should be pro-

vided by the simulator supplier to facilitate optimal positioning of modules and spec-

tral mismatch calculation respectively.
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3.2  Reference Devices and Spectral Mismatch Correction 

 3.2.1 Main Requirements

For calibration measurements the irradiance level can be determined with a refer-

ence device. IEC standard 60904-22 defi nes these as follows:

 “Reference solar devices are specially calibrated devices which are used 

to measure natural or simulated irradiance or to set simulator irradiance 

levels for measuring the performance of other solar devices having similar 

spectral response, optical characteristics, dimensions and electrical cir-

cuitry.” 

Th e general requirements for a reference device in IEC 60904-2 are stable photo-

voltaic characteristics and linear variation of the output signal with irradiance. Th e 

stability requirement in IEC 60904-2 is fairly weak: 

“if the calibration value of a reference device has changed by more than 

5% of the initial calibration, it shall not be used as a reference device”. 

Th e requirements for mechanical construction, optical properties and electrical cir-

cuit are also defi ned. Th e factors are refl ected in the recommended reference devices 

for module measurements as follows: 

“Th e use of a full-size reference module is recommended in measuring 

other modules in order to achieve correspondence of dimensions, mechan-

ical construction, optical properties and electrical circuitry of the reference 

module and test specimen, so as to minimize discrepancies due to simula-

tor non-uniformity, internal refl ections or temperature distribution.”

Silicon cells and modules can fulfi l the stability and linearity requirements, if care-

fully selected, and well established calibration procedures for full size modules are 

available. Si reference modules can in principle be built with diff erent kinds of Si cells 

provided the match to the particular module under test is achieved. 

For other solar cell materials it would be ideal to also have modules of the same 

size and material to avoid the above-mentioned mechanical, optical and electrical 

problems. In the ideal case a reference device is available with a spectral response 

which resembles very closely or equals the spectral response of the test device. In this 

case the spectral mismatch can be eliminated, irrespective of possible discrepancies 

between test and standard spectrum. Th e details of the spectral mismatch correction 

are explained in “IEC 60904-7 – Computation of spectral mismatch error”. 

2  The new version of this standard (IEC 60904-2, March 2007) merges the previous versions IEC 60904-2 (Photovoltaic 

devices. Part 2: Requirements for reference solar cells) and IEC 60904-6 (Photovoltaic devices. Part 6: Requirements for 

reference solar modules).
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For measurements under fl ashers the spectrum changes during the decay of the fl ash 

and thus doesn’t correspond to the reference spectrum at least for part of the mea-

surement. In such cases it is especially important that a suitable reference device is 

used. Th e following test is available for the quality of the spectral match of the refer-

ence device and the device to be measured [1, 2]: if during the decay of light inten-

sity of a (large area) pulsed solar simulator the spectrum has a marked red shift , the 

short circuit current of both devices (reference and test device) can be measured 

simultaneously against time. Th e normalized ratio of short circuit current of device 

to be measured over short circuit current of reference device is then plotted against 

irradiance as determined by the reference device. For a good match this ratio should 

remain constant with irradiance change. (Th e deviation indicates the mismatch fac-

tor at the given irradiance.) Th is test can be performed easily and quickly, and could 

be used to determine which out of a selection of references devices has the best match 

to the device to be measured.3 It should, however, be established that a suffi  cient red 

shift  of the spectrum does exist using appropriate measurement equipment. 

 3.2.2  Spectral Mismatch

Th e spectral mismatch caused by the diff erences of the simulator spectrum to the 

standard spectrum in conjunction with diff erent spectral responses of reference and 

test cell is potentially signifi cant error source for all devices. It can be corrected by a 

mismatch factor M:

 M = 
∫ SRTC (λ) . ESIM (λ) dλ ∫ SRRC (λ) . ESTC (λ) dλ  

(1)
         ∫ SRTC (λ) . ESTC (λ) dλ ∫ SR

RC
 (λ) . ESIM (λ) dλ

with  SRTC (λ) spectral response of the cell under test

 SRRC (λ) spectral response of the reference cell

 ESIM (λ)  spectral irradiance of the simulator spectrum

 ESTC (λ)  spectral irradiance of the standard spectrum

 3.2.3  Practical Considerations

 ● For c-Si modules straight from production, it is advisable that these are 

exposed to sunlight (either real or simulated) to an irradiation level of mini-

mum 5 kWh/m² in order to exclude any eff ects caused by light induced deg-

radation before the fi rst calibration. During the exposure time the module 

shall be open circuited or operated with resistive load which is sized so that it 

operates near the maximum power point at STC.

3  This test of course requires the absence of capacitive, resistive and light soaking eff ects for test and reference device 

which could resemble or add to the spectral mismatch eff ect.
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 ● Temperature and irradiance correction of the measured I-V characteristic 

might become necessary when the reference module is used for adjustment 

of the solar simulator. Th is translation shall follow the procedure of the stan-

dard IEC 60891 and is normally automatically done by the operating soft ware 

of the solar simulator. Care should be taken that the correct temperature and 

irradiance correction parameters for the reference module are used.

 ● Th e frequent use of reference modules can cause deterioration of the electri-

cal contacts such as connectors or terminals, which are oft en not designed for 

repeated connection and disconnection. In particular, measurement errors 

can be introduced if the calibrated maximum power is referenced for adjust-

ment of the solar simulator. Th erefore, the quality of the contacts shall be 

regularly checked (i.e. measurement of the module internal series resistance, 

cross check of working reference with the primary reference) and the refer-

ence module replaced, if necessary. 

 ● Range, type and pre-treatment: Th e reference module should as far as possi-

ble be identical to the production modules, especially in cell size, cell technol-

ogy, the total number and interconnection of the cells. Th is usually requires 

a set of reference modules, with one for each of the diff erent production set-

ups. Optimally, two modules of each reference design should be available 

with an overlapping calibration interval. As mentioned above reference mod-

ules should be stabilized before the fi rst calibration i.e. with light soaking of 

5 kWh/m² under load or Voc-conditions. It is further recommended to check 

the stability of the measurement results in each case aft er irradiation and aft er 

a subsequent dark storage of 24 h. If a module type does not exhibit stable 

behaviour, a procedure must be determined for its pre-treatment before cali-

bration and for stabilisation before each use as a reference module. 

 ● Calibration and internal control: A check of the traceability of the electri-

cal parameters of reference modules should be done at yearly intervals. It is 

recommended to use a larger group of type specifi c reference modules for 

cross-comparison with working standards and between diff erent reference 

modules in a much shorter time intervals. Th us the stability of both the indi-

vidual modules as reference and the simulator features can be monitored. 

A further check of the stability should be done through the comparison of 

calibration and actual measurements of short circuit current aft er setting the 

irradiation intensity of the solar simulator based on the calibration of Pmax. 

 ● Handling and Use: Reference modules should be subject to a documented 

and organized management. Th e use of primary and working reference is 

recommended. Th e references should be stress free as far as possible, that is, 

they should only be exposed to low radiation, be kept at a constant tempera-

ture level and mechanical stress during storage and handling should be mini-

mized. Th e solar simulator is primarily adjusted to Pmax of the reference mod-

ule. Th e resulting deviation of the Isc reference module is monitored and used 

as a quality criterion. For example, one should consider an deviation interval 

of ±0.5% triggering documentation and information of those responsible. 

An adjustment of the calibration shall be undertaken only in consultation 

with appropriately trained personnel. If a larger barrier (for example ±2%) is 

exceeded a comprehensive investigation should be initiated, to preclude mal-

functioning as the cause. Th e measurements themselves are set in advance 
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and developed in line with the experience gained. Where possible reference 

module measurements for both Isc and Voc should be made in accordance 

with Isc. Th e deviations of the results can also serve as a quality criterion. 

Reference module measurements before and aft er the measurement of the 

production modules can reveal drift ing otherwise unnoticed.

 3.2.4  Non-Crystalline Silicon Modules

Th e IEC standards were developed for crystalline silicon devices, and the majority of 

reference cells and modules employed up to now are also based on crystalline silicon. 

For indoor calibration of traditional crystalline silicon devices measurement accura-

cies of about ± 2% have been achieved in the leading calibration labs [3]. Other solar 

cell materials and high effi  ciency silicon modules are not as “well-behaved”. Problems 

which can arise are:

 ● diff erent thermal behaviour under illumination depending on the kind of 

encapsulation (bare Si-cells; metal case; thin fi lm between two glass plates; 

glass front and plastic back-sheets, etc.), leading to an uncertainty in the 

determination of the correct junction temperature and thus in the PV prop-

erties of the devices

 ● capacitive eff ects: the effi  ciencies measured with a fl asher as a light source may 

not correspond to those measured under steady state light (e.g. outdoors) due 

to high carrier lifetimes or properties of the metal-semiconductor contacts.

 ● “resistive mismatch”: homogeneous solar thin fi lms represent a diff erent 

resistive network than single Si cells, possibly adding to the problem of the 

capacitive eff ects when measured under a fl asher

 ● light soaking eff ects: the samples change their properties under illumination 

on a time scale of seconds to minutes/hours

 ● seasonal variation of effi  ciency (due to thermal annealing)

 ● spectral mismatch: a spectral response diff erent from standard (mostly Si) 

reference devices, leading to a spectral mismatch between reference and test 

device if the spectrum of the solar simulator diff ers from the standard spec-

trum (which is the case for all present simulators, see below)

 ● multijunction cells require the spectrally appropriate illumination of each 

junction 

 ● optical mismatch: thin fi lm modules with their homogeneous fi lm coverage 

have internal light refl ections which diff er from (reference) modules with 

single Si cells and intermediate space

 ● as the electrical performance of thin-fi lm modules can vary considerably 

(fabrication tolerance), care must be taken regarding the use of a constant 

spectral mismatch factor for those modules. Also the module parameters for 

the temperature and irradiance corrections according to IEC 60891 might 

diff er for thin-fi lm modules of diff erent effi  ciency classes from the same man-

ufacturer and should be carefully evaluated. A guide is given by test standard 

IEC 60904-5, which describes a method to derive the equivalent cell tem-

perature (ECT) from Voc and irradiance measurement.

Th ese issues are addressed with respect to specifi c technologies in section 5.
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4. Measurement
Procedures

4.1 Module Measurements on Simulators 

Nowadays the great majority of PV module manufacturers use pulsed solar simula-

tors with xenon lamps for power measurement but the I-V measurement hardware 

and measurement techniques still vary widely. Th is section therefore aims to provide 

a set of practical recommendations for module manufacturers aiming to harmon-

ise measurement methods and to improve the quality of their power measurements. 

Th ese are based on fi ndings of the PERFORMANCE Sub-Project 1, the results from 

the German research project “Characterisation of PV modules in PV module pro-

duction” co-ordinated by Fraunhofer-ISE and experiences from TÜV Rheinland’s 

factory surveillance programme as a part of module production certifi cation.

 4.1.1  General

 ● General requirements for solar simulators are laid down in IEC 60904-9.

 ● General requirements for I-V measurement are laid down in IEC 60904-1.

 ● Recalibration intervals of the I-V measurement equipment and the tempera-

ture data acquisition shall not exceed 12 months. As normally the I-V load 

is integral part of the solar simulator, special calibration services provided by 

the systems supplier may be required.

 ● Repeated use of reference modules will lead to deterioration of the electri-

cal contact quality i.e. an increase of contact resistance. Th erefore, the cable 

adapters for the 4-wire connection to the I-V load shall be checked and 

replaced regularly.

 ● Responsibilities for power measurement shall be clearly defi ned: Who is 

allowed to operate the simulator? Who is allowed to defi ne module types? 

Who is responsible for maintaining the module data base? etc.

 ● To compensate defi cits in understanding of the working principle of solar 

simulators, training and qualifi cation measures shall be defi ned for person-

nel, in particular the quality manager. 

 ● Special care must be taken if systems with non-fi ltered xenon lamps are used. 

Spectral mismatch errors can occur for the production tolerances of electri-

cal performance. Procedures for spectral mismatch calculation in accordance 

with IEC 60904-7 shall be in place.
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 4.1.2  Requirements for Reference Modules 

 ● Basic requirements are defi ned in IEC 60904-2.

 ● Reference modules shall be electrically stable. For example, amorphous devices 

will change performance with irradiation. Also c-Si modules may be subject to 

light induced degradation as solarisation of the glass cover can reduce trans-

mittance or boron doped mono-Si cells may require initial stabilisation. Rec-

ommendations of the suppliers shall be followed to ensure stabilisation.

 ● Reference modules shall cover the range of produced modules (module size, 

cell technology, interconnection circuit of cells etc.). Th is normally requires a 

set of reference modules. Th ere must be a clear assignment to module types. 

 ● Instead of originally calibrated reference modules provided by a test labora-

tory (“master” reference) “working” references shall be introduced for every-

day use. “Working” references shall be of the same type as the “master” refer-

ence. Th ese shall be regularly cross checked with “master” references.

 ● Besides calibration data, measurement reports of reference modules shall 

include module I-V correction parameters as laid down in IEC 60891 (i.e. 

temperature coeffi  cients, series resistance). Th ese shall be made available in 

the internal module data base.

 ● Th e module data base shall also contain information on I-V data acquisition 

parameters to avoid transient eff ects caused by high sweep rate (segmental 

measurement mode, I-V data acquisition time, I-V delay time aft er receiving 

trigger signal)

 ● Th e frequency for the use of a “working” reference shall be suffi  cient to 

guarantee that the reproducibility between the I-V measurements is within 

± 0.5%. Th e best-practice defi nition shall refl ect the experience of the manu-

facturer. Typical defi nitions are: once per day, at the beginning of every new 

working shift  and aft er a change of module type.

 ● Reference modules shall be stored in a safe and controlled environment to guar-

antee electrical stabilisation. Furthermore, any mechanical stress shall be avoided.

 4.1.3  Choice of Main Parameter for Calibration 

Th ere are two ways to verify a reference module’s calibration data: 

a) reference module delivers calibrated ISC, and 

b) reference module delivers calibrated PMAX. 

Th e advantages and disadvantages of the two ways are summarised below. Normally, 

it will not be possible to exactly reproduce both ISC and PMAX. Depending on which 

is chosen, the second parameter is then fl oating. However, the measured ISC, PMAX 

and VOC should in any case be in agreement to within ± 1% of calibration data. Any 

larger discrepancy could indicate the following problems:

Discrepancy on VOC  ▶ check module temperature measurement 

Discrepancy on ISC  ▶ check contacting technique, module temperature 

  measurement

Discrepancy on PMAX  ▶  check uniformity of irradiance, sweep rate
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ISC of the reference module 

Advantage:  Almost independent from module temperature and connection 

  technique

Disadvantage:  Non-uniform illumination of a module will mainly aff ect ISC of a 

  module. Increase of non-uniformity will cause lower ISC. Th us a 

  higher irradiance setting is required to deliver calibrated ISC. Th is 

  means overestimation of module power.

PMAX of the reference module

Advantage:  Better compensation of non-uniformity eff ects

Disadvantage:  Requires a careful module temperature measurement and connec- 

  tion technique. Bad contact will cause higher irradiance level 

  to deliver calibrated PMAX. Th is means overestimation of module 

  power.

 4.1.4  Calibration Procedure

Step 1 : Instrumentation: Th e “master” or “working” reference is placed in the pre-

defi ned position in the test area with optimal uniformity of irradiance. Th e module is 

connected to the I-V load (4-wire connection) and temperature sensors are attached.

Step 2 : Operation soft ware: As the measurement conditions may diff er from STC, 

the module type’s specifi c characteristics must transferred into the operating soft ware 

of the solar simulator (i.e. temperature coeffi  cients, internal series resistance) Based 

on the measured I-V curve the soft ware will calculate and display the temperature 

and irradiance curve corrected to STC. 

Step 3 : Control measurement with reference module: If temperature conditions are 

fulfi lled the fi rst I-V measurement with the reference module is performed. If mea-

surement results lie within pre-defi ned tolerances compared to the calibrated values, 

e.g. ± 1% of the “working” reference, production line measurements can be contin-

ued.

Step 4 :  Re-adjustment of solar simulator: If the criterion under Step 3 is not fulfi lled 

the scaling factor of solar simulator irradiance sensor is adjusted accordingly. Th e 

new setting is verifi ed by repetition of Step 3.

 4.1.5  Module Temperature Measurement

 ● Measurement error for P
MAX

 is approx. 0.5% per K

 ● If ambient temperature is referenced, modules from production shall be 

given suffi  cient time to adjust to ambient.

 ● Possible temperature distribution across the module area shall be checked. 

Th e position of the temperature sensor used as the reference for temperature 

correction shall represent the average module temperature.

 ● A minimum of 2 temperature sensors shall be used in order to make a plau-

sibility check of the reading possible.



Gu
id

el
in

es
 fo

r P
V 

Po
w

er
 M

ea
su

re
m

en
t i

n 
In

du
st

ry

 34

 4.1.6  Quality Assurance

 ● Eff ective irradiance shall lie in the range of 1000 W/m² in order to keep the 

irradiance correction low for measured I-V curve.

 ● Uniformity of irradiance shall be checked regularly. In particular, aft er chang-

ing lamps or any kind of maintenance work that might change the refl ective 

conditions. Marks shall defi ne the test locations for diff erent module sizes.

 ● A data table of spectral irradiance shall be available to allow spectral mis-

match calculation in accordance with IEC 60904-7.
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4.2 Outdoor Measurements

Although outdoor measurement is not normally considered in relation to PV produc-

tion lines, in some circumstances such measurements may be preferred for selected 

modules. Th e main advantages of using natural sunlight are:

 ● Very uniform illumination of the PV module

 ● Cheap, does not require expensive light sources

 ● Inexpensive measurement equipment

 ● Stable during good weather conditions

 ● Easy characterisation of “slow response” devices

 ● Air Mass can be chosen to be close to 1.5 

Th ere are disadvantages however:

 ● Subject to the weather

 ● Inherently variable illumination throughout the day

 ● Changing air mass with time

 ● Diffi  cult to control measurement environment, ie module heats up with 

exposure

Outdoor measurements are typically realized under test conditions close to STC 

using a set-up with a solar tracker. With clear-sky conditions, the air mass of the 

natural sunlight around noon is close to AM1.5G. Th e spectral distribution of the 

incident sunlight can in any case be measured, for instance using a horizontally-

mounted spectroradiometer. Th e measured spectrum is used as an approximation to 

the in-plane spectral irradiance distribution. Th e weighting between the diff use and 

the direct component is therefore diff erent, which will change the mismatch factor. 

However, the mismatch correction for outdoor measurements is generally small as 

the solar spectrum is close to the reference spectral irradiance. In fact the mismatch 

correction is normally smaller than the associated uncertainty. Th is may justify omit-

ting the explicit spectral mismatch correction and considering the same uncertainty 

contribution as if it were done.

One complicating factor with outdoor measurements is the need to carefully control 

the temperature of the device under test and to avoid (or minimise) the module’s 

exposure to light before the measurements, in order to avoid conditioning the device. 

Th e accepted temperature range is typically broader than indoors e.g. 25 ± 2˚C. Th e 

temperature of the reference should also be controlled. If a reference cell is being used 

it can be mounted on a Peltier device, which combines electrically controlled heating 

or cooling.
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5. Technology-Specifi c
Issues 

5.1  High Effi  ciency Silicon Modules

High effi  ciency c-Si modules – in the form of either by back contact or HIT cells 

–are usually highly capacitive and power measurements can be infl uenced by sweep-

time eff ects when the IV scan acquisition times are too fast (generally already below 

200 ms). Mau [4] gives an overview of capacitive module types together with their 

response times. 

Th e fast I-V sweeps of these kind of modules can lead to under- or overestimations 

of over 20% for the measured power PMAX, depending on sweep-time and sweep-

direction (Isc to Voc or vice versa) and puts severe constraints on the pulse duration of 

the fl ashers used to test these devices in a lab. Figure 7 shows the values of the power 

PMAX of a high-effi  ciency c-Si device measured as a function of the sweep-speed and 

sweep direction [5]
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Figure 7 : Power of a high-effi  ciency c-Si module as a function of the sweep-speed 

[5] (Pmax is normalised to the 1s value; forward sweep is Isc to Voc).
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Th e capacitance of a solar cell has three diff erent contributions: 1) the junction capac-

itance, which represents the charge storage in the depletion layer of the pn junction, 

(dominating in reverse and low forward bias conditions); 2) the diff usion capacitance, 

which corresponds to the minority carrier storage in the quasi-neutral regions of the 

junction (signifi cant in forward bias). Th is capacitance is signifi cant for solar cells 

with high minority carrier lifetime; and 3) the transient carrier capacitance, which 

can be attributed to the existence of defect and interface states [6]. Th e last two con-

tributions depend exponentially on the applied voltage. Th is allows combining the 

two into the free carrier capacitance. Th e diff usion capacitance is the main respon-

sible of the measurement artifacts described in this section, as shown in Figure 8. Th e 

diff usion capacitance has the following dependence on the applied voltage V:

    Cdiff  = C0 exp (b kT/q V),  (2)

Where C0 and b are constants, k the Boltzmann constant, q the elementary particle 

charge, and T the temperature. Typical values of for the total capacitance of a high 

effi  ciency solar cell vary from 30 to 100 μmF/cm2 and are 100 times higher than for 

conventional solar cells.
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Figure 8 : Junction, diff usion and total capacitance of a high-effi  ciency 

c-Si solar cell (from [6]).
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For a correct simulation of the electrical cell performance trough an equivalent cir-

cuit model the free carrier capacitor must be placed in parallel to the junction capaci-

tance, the diode and the shunt resistance (Figure 9). During very fast IV scans, the 

charging or discharging of the capacitor may infl uence the IV measurement itself. 

Th e total current is given by: 

   I = Id+Ish+Ic-Iph     (3)

where Id, Ish, and Ic, represent the currents through the diode, the shunt resistance, 

the capacitors respectively, and Iph the photo-generated current. Ic is given by:

IC = dQC == dCVC = C = C dVC + V+ VCC
 dC

    dt dt dt dt
  

(4)

where Qc is the capacitor charge, C the total capacitance of the cell and Vc is as 

shown in Figure 9.

VId
RP Cj

Iph
Cfc

Ish Ij Ifc
I

RS

VC

Figure 9: Dynamic single diode equivalent circuit model of a solar cell. 

Several other factors can also infl uence the shape of the IV-curve.

1. Th e cell capacitance C itself; 

2. Numbers of cells connected in series or parallel (the higher the number of 

cells in series or the lower the strings in parallel, the lower is the total capaci-

tance of the module);

3. Th e cell area (the cell capacitance is directly proportional to the cell area);

4. Th e series resistance;

5. IV sweep speed (dV/dt), which is especially high for short pulse simulators;

6. Sweep direction (Isc to Voc or vice versa);

7. Number of IV points or scan time (too many points increases the risk of 

transient errors);

8. Th e temporal profi le of the irradiance which gives the current gradient 

dI/dt. 
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Even if the voltage is held constant during the whole measurement (dV/dt=0), the 

current needs to stabilize. For very high capacitive modules or very short light pulses 

(~2 ms) this eff ect cannot be neglected.

As an indication of the accuracy that can be expected using best practice methods, 

a recent inter-comparison in made as part of the Performance Integrated Project 

showed repeatability of Pmax values in a range of -1% to +1.3%. Th is is only slightly 

larger than the ± 1% range expected for non-capacitive c-Si modules.

 5.1.1  Measurement Equipment 

Th e high capacitance of high effi  ciency modules makes it diffi  cult to characterize 

them in a single fl ash using very fast electronics, so that several precautions should be 

taken into account. As noted in IEC 60904-1, the presence of sweep-time eff ects can 

be checked by performing a sweep in both directions (Isc to Voc and vice versa). Th e 

divergence of the two I-V curves gives an indication whether capacitive eff ects exist 

for the given measurement conditions. Moreover IEC 60904-1 requires that “the time 

interval between the data points shall be suffi  ciently long to ensure that the response 

time of the test specimen and the rate of data collection will not introduce errors.”

Th e typical duration of light pulses for indoor fl asher usually varies between 1 to 

20 ms with diff erent temporal profi les (rectangular shape or decaying pulse). Th ese 

intervals are too short for a proper characterization of high-effi  ciency c-Si modules 

within a single fl ash without introducing measurements artefacts related to capaci-

tive eff ects. Other pulsed solar simulators available on the market have longer pulse 

durations (80-100 ms). Th ese fl ashers would be more suitable for these devices  – 

though some devices require even longer pulse durations (see Figure 7) – but are 

usually extremely expensive. 

Figure 10 shows the results of IV curve measurements on a high-effi  ciency c-Si solar 

cell, realised with diff erent approaches: 1) slow speed “steady state” IV curve (green 

line), 2) high speed IV direct (from Isc to Voc) sweep realized with a 2ms fl asher 

(red points), and 3) high speed IV reverse (from Voc to Isc) sweep realized with a 

2ms fl asher (blue points) [6]. Th e steady state curve was obtained with one of the 

approaches described in Section 5.1.3.

Usually PV modules are measured in forward direction (from Isc to Voc). In this case 

we observe an underestimation of power and Voc, whereas for reverse sweeps (from 

Voc to Isc) a strong overestimation of Pmax is observed. Th e asymmetry is due to the 

presence of the term Rs *dI/dt. For this cell IV sweeps in the range of 1-2 ms lead to 

under- and overestimations of up to 10% and 30%, respectively, depending on the 

sweep-direction.
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Figure 10: IV curve measurements on a high-effi  ciency c-Si solar cell 

realised with diff erent approaches: 1) slow speed “steady state” IV curve (green 

line), 2) high speed IV direct (from Isc to Voc) sweep realized with a 2ms 

fl asher (red points), and 3) high speed IV reverse (from Voc to Isc) sweep realized 

with a 2ms fl asher (blue points) [6].

 5.1.2 Measurement Procedures

Some of the module technologies present today on the market require pulse dura-

tions up to 250 ms to allow a correct I-V measurement, but there is no pulsed solar 

simulator on the market able to reach these irradiance durations. It is also expected 

that the trend towards more effi  cient modules and the number of such module tech-

nologies on the market will continually increase. With the sweep time being defi ned 

by the fl ash duration of the simulator, the only way to avoid these measurement 

errors is to apply special procedures or to develop solar simulators with very long 

pulses (> 100 ms). Th is second approach is not considered here (it likely to be very 

expensive solution and may introduce additional problems such as module heating 

and the subsequent need for temperature correction). 

Th e following approaches are considered below: 

 ● Outdoor characterization;

 ● Steady state solar simulator;

 ● Multi-fl ash point by point measurement;

 ● Multi-fl ash measurement by sections;

 ● Multi-fl ash modulated voltage measurement.
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Outdoor characterization

Outdoor performance measurements allow the realization of low-speed measure-

ments and can easily provide a solution to the problem of sweep-time eff ects for high 

effi  ciency c-Si modules. Advantages and disadvantages of this approach are listed in 

Section 4.2. However it cannot be applied as an integral part of module production 

quality control. 

Steady state solar simulator measurement

Steady state solar simulators allow the realization of low-speed measurements and 

could provide a solution to the problem of sweep-time eff ects for high effi  ciency c-Si 

modules also in a production environment, where high throughputs are required. 

However, the equipment is generally very expensive and other problems arise. For 

example, the module under test requires carefully temperature monitoring and the 

subsequent application of temperature corrections to the measurement, which may 

also introduce an additional source of measurement error. Th e heating of the mea-

surement environment (lab or production line) should also be considered. Moreover, 

such equipment typically uses a series of lamps which may have diff erent aging rates, 

so careful and frequent monitoring of the irradiance uniformity on the measurement 

plane is necessary.

Point-by-point multi-fl ash measurement

Th is method allows the use of conventional fl ashers for the performance measure-

ment of these devices. Th e voltage is held constant during the light pulse and only 

one current –voltage (IV) data-pair is measured during each pulse. A full curve of 

current-voltage points is obtained by making multiple fl ashes – each with diff erent 

applied voltage – and then extracting the relevant data. Th e method does not require 

a temperature correction and has been applied with good results to all existing c-Si 

technologies, as shown in Figure 11, though for very high capacitive modules the 

method should be carefully checked a priori, as the current could not be able to stabi-

lise at voltages > Vmax when very short light pulses (~2 ms) are used. Th is approach 

is however very time consuming (fl ashes and charging time between fl ashes) and 

requires 15 – 20 fl ashes in order to obtain a reliable IV curve. Interpolation of data 

points is then required to extract the PV parameters from the curve. Moreover, the 

accelerated aging of lamps should be considered.
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Figure 11: IV curve measurements of a typical high-effi  ciency c-Si solar module, 

realized by means of diff erent approaches: 1) multi-fl ash IV curve (red points), 2) 

high speed IV direct (from Isc to Voc) sweep realized with a 2ms fl asher, and 3) high 

speed IV reverse (from Voc to Isc) sweep realized with a 2ms fl asher.

Sectional multi-fl ash IV measurement

Th is method allows the use of conventional fl ashers for the performance measure-

ment of these devices. With this approach a varying voltage is applied during the light 

pulse, but the module is swept from Isc to Voc (or vice versa) not in one single measure-

ment but during subsequent IV scans (segments). A full IV curve is then obtained by 

repeating multiple fl ashes and attaching the diff erent sub-sections together.

Th is method does not require a temperature correction and can be applied with good 

results to all existing c-Si technologies, as shown in Figure 12, though for very high 

capacitive modules the method should be carefully checked a priori. Th e current is 

in fact not able to stabilise at voltages > Vmax when very short light pulses (~2 ms) 

are used. Compared to point by point multi-fl ash IV measurements, less fl ashes are 

required when measuring low/medium capacitive modules. Th is approach is how-

ever time-consuming (fl ashes and charging time between fl ashes) and the number of 

required sections has to be verifi ed in advance to get good matching of sections and 

to avoid transient errors within single sub-sections.
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Figure 12 : IV measurements of a typical high-effi  ciency c-Si module using: 

1) multi-fl ash segments and 2) high speed forward (Isc to Voc) and reverse 

(Voc to Isc) sweeps with a 2 ms fl asher

Voltage modulation multi-fl ash measurement

Th e point-by-point multi-fl ash method with a constant voltage applied during the 

whole sweep has, however, shown to be limited in the case of very short pulses (≤2ms) 

and voltages above Vmax when very high capacitive modules are measured. Th is error 

has been correlated to changes in the charge stored within the cell. Today only one 

commercial technique overcomes this problem [7]. Rather than applying a constant 

voltage to the module during the pulse, the voltage is modulated with a small signal 

proportional to the current fl owing at the terminals (V= Vconst-k2*I). Th e small sig-

nal term K2*I is designed to maintain constant the charge within the solar module. In 

this way it counteracts changes in the electron- and hole-density profi les in the solar 

cells, as well as voltage drops due to wiring, solar cell metallization and internal series 

resistances. Th e result is a faster response time of the module to changing light condi-

tions (Figure 13). Th e technique needs a preliminary measurement to determine the 

correct voltage modulation, which may vary from module to module for a given type 

depending on the manufacturer, production batch or class. 

In combination with standard solar simulators with relative long re-charging times 

in-between fl ashes, the disadvantages are similar to the ones for all before described 

multi-fl ash approaches (e.g. time-consuming technique and accelerated aging of the 

lamps). Th e operation with low cost simulators with very short pulses and high rep-

etition rates allows instead to perform a full IV-measurement in a more restricted 

time, reducing so some of the typical disadvantages of multi-fl ash methods.
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Figure 13 : Multi-fl ash approach with the Sintron voltage modulation. Th e modu-

lated signal compensates the current delay obtained with constant voltage signals.

 5.1.3 Back–Contact Devices

Back contacting is a promising concept to achieve higher effi  ciencies: the reduction or 

absence of the metallisation on the front side of the solar cell increases the potential 

for higher currents. It also opens possibilities for more effi  cient manufacturing. Back 

contact modules do not per se present specifi c problems for power measurement, 

since the module design implicitly includes a solution to back contact issues. It may 

however be necessary to consider capacitive eff ects i.e. it should be demonstrated 

that the sweep time used is suffi  cient to avoid transient eff ects. Th is can typically be 

checked by performing a sweep in both directions (Isc to Voc and visa versa). Diver-

gence of the two I-V curves is an indication that capacitive eff ects exist for the given 

measurement conditions. Th is may be resolved by adopting longer sweep times.

Th e situation with regard to characterising bare cells is more complex, since prob-

lems such as contacting and temperature uniformity must be addressed. 

a) BCCs have regions without metallisation between the fi ngers, making them 

locally bifacial. Mounting chucks are used to contact the solar cell electrically 

and thermally. A metallic surface provides a good thermal contact, but for 

the electrical isolation a coating like an oxide, a foil or paint is necessary. Th e 
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surface of the chuck has a characteristic refl ectivity and the resulting errors 

need to be compensated for. 

b) Cell mounting on chuck: the cell will drop off  the chuck with increasing 

pressure of the contact probes from the back side and holders need to be 

used to ensure proper contact during the measurement.

c) Transmitting holders/cover glass: the wavelength dependence of the 

transmission of glass has to be taken into account for uncertainty estimation. 

For a complete glass covered solution inter-refl ection (cell-glass, chuck-glass) 

additional eff ects have to be considered. 

d) Temperature Uniformity: Th e electrical isolation between the two types of 

rear contacts in a BCC is likely to aff ect the thermal contact. In addition, 

the wider areas covered by electrical contacts are not thermally contacted. 

Th e design of a contact chuck has therefore to fi nd a compromise between 

electrical and thermal contact.

PERFORMANCE IP has produced a comprehensive guide to back contact cell mea-

surements [8] which should consulted for further details. 

5.2 Thin Film Modules

Up to now there are no international standards which specifi cally address calibration 

or power measurement of thin fi lm technologies4. Th e following sections aim to pro-

vide guidance on several of the issues that arise in obtaining accurate and representa-

tive power measurements for these technologies.

 5.2.1 Solar Simulators 

It is important to minimise the mismatch between the simulator spectrum and that 

of the module under test, unless this issue is covered by the use of an appropriate ref-

erence device. Th is situation is particularly complex if the eff ect of temporal variation 

of the pulse needs to be considered. Section 5.2.4 provides further details regarding 

selection of appropriate reference devices.

4  The IEC 61646 standard for thin fi lm module qualifi cation includes comparative power measurements. However the 

pass criterion is that the module be within 10% of the minimum manufacturer’s labelled power (also subtracting the labs 

measurement uncertainty). The resulting margin is large and this standard is not recommended as a guide for measure-

ments intended for power labelling or for calibrating or verifying the performance of purchased modules.
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 5.2.2 Capacitive Eff ects

Several thin fi lm module technologies show capacitive i.e. sweep-time eff ects. As 

noted in IEC 60904-1, the presence of sweep-time can be checked by performing 

a sweep in both directions (Isc to Voc and vice versa). Th e divergence of the two I-V 

curves gives an indication whether capacitive eff ects exist for the given measure-

ment conditions. Table 3 shows the general categories and associated PV technolo-

gies. Concerning the measurement options for extended sweep times, the reader is 

referred to section 5.1.1, which addresses this issue in relation to high-effi  ciency sili-

con modules and considers the use of long pulse and multi-fl ash techniques as well 

as outdoor (natural sunlight) characterization.

Table 3 : Capacitive eff ects and recommended pulse/sweep times

Capacitive / Sweep-speed 

Eff ect

Recommended minimum 

pulse/sweep duration

PV materials aff ected

no/low 2 ms c-Si, CIS, CdTe

medium > 10ms a-Si based technologies

high >100 ms high effi  ciency c-Si

 5.2.3 Pre-Conditioning

Th e performance of most thin fi lm technologies is signifi cantly aff ected by light-soak-

ing and thermal history [12,13,14]. Several phenomena can be observed depending 

on the given technology. Th ese include:

 − Long term degradation under light soaking i.e. the well-know Stäbler-Wronsky 

eff ect [15], which stabilises aft er about 1000 hours

 − in situ variations due to reversible degradation or annealing, oft en termed sea-

sonal variations

 − Dark ageing: degradation during extended storage in low light or dark condi-

tions, which can be recovered either partially or completely by light soaking

 − Dark annealing: improvement of performance following occurring during peri-

ods in dark conditions; the timescale for this eff ect can range from very short 

(minutes) to long (hundreds of hours).

As a consequence an appropriate pre-conditioning treatment needs to be applied to 

ensure that the performance measurements are representative of those expected in 

normal operation. 
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Th ere are no specifi c power calibration standards for thin fi lms, but the IEC 61646 

standard for thin fi lm module qualifi cation provides a procedure for stabilizing the 

electrical characteristics to provide consistent measurement conditions to check for 

loss of performance during the required thermal and damp heat cycling, which fore-

sees a series of light soaking periods at 600-1000 W/m2 and 40-60 ºC module tem-

perature. It is important that the modules are under load during light soaking, using 

an resistance selected to produce current-voltage conditions close to the maximum 

power point. Stabilisation is deemed to be reached when measurements from three 

consecutive periods of at least 43 kWh/m² meet the criterion (Pmax-Pmin)/Paverage < 2%. 

Th ese Pmax measurements shall be performed at any convenient module tempera-

ture, reproduced to within ±2 °C. Th is addresses the degradation or recovery which 

can occur during exposure to light when a module is fi rst used or aft er an extended 

period of storage in the dark. 

It is stressed that IEC 61646 is not a calibration standard. For calibration measure-

ments it is recommended that the testing organisation demonstrate that the light 

soaking procedure has indeed resulted in stable characteristics e.g. no decreasing 

trend and/or three successive measurements within the repeatability margins of the 

measurement system (typically less than 2%). 

Further issues to consider in determining the preconditioning procedure include: 

a) possible infl uence of the light/temperature/time history in the period between 

the above light soaking and the I-V measurement, 

b) production line situations in which extended/repeated periods of light 

soaking prior to measurement are not an option, and 

c) proper storage of “stabilised” modules e.g. those to be used as “references” for 

checking production fl asher systems. 

Th ese are addressed for generic TF technologies in the following sub-sections.

Amorphous Silicon

PV devices made from a-Si thin fi lm technology (both mono- and multi-junction) 

are well known to exhibit two types of variations in their electrical characteristics. 

1) Initial degradation aft er production caused by light soaking: typically aft er 

a few hundred hours of illumination a-Si devices reach a stabilized power 

level, typically 15-20% less than the initial value. For power measurements 

this eff ect can be addressed by using a light soaking procedure such as that 

specifi ed in IEC 61646. 

2) Although a-Si modules exhibit well-known seasonal performance variations 

during outdoor exposure (aft er stabilization)5, for performance measurements 

of stabilised modules these are not considered critical. Th ese can be avoided 

by ensuring that the devices under test are stored at a controlled temperature 

below that used for stabilisation, and only exposed to light for a very short 

time between diff erent measurements.

5  For a-Si a low module temperature (winter) leads to degradation while higher module temperatures (summer) pro-

duce recovery by annealing. These phenomena can produce Pmax variations of ±10% with respect to the yearly average.
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3) Dark annealing: if the temperature during dark storage of a apparently 

stabilised modules is comparable to that which was used for the original light 

soaking e.g. if this was done outdoors in cool conditions, dark annealing may 

occur. Under such circumstances the module would require further light 

soaking aft er removal from storage to ensure stability. It is clearly desirable to 

avoid this situation by ensuring the module stabilisation temperature during 

the initial ageing is adequate and that the temperature during storage and/or 

transport does not become too high. 

CI(G)S

Th in fi lm Cu(In,Ga)Se
2
 devices demonstrate pronounced metastable variations 

[22]. If the devices are stored in the dark, fi ll factor and Voc decrease considerably 

(especially at elevated temperatures), Isc is aff ected only to a minor extent (refl ecting 

changes of the spectral quantum effi  ciency). Th is “dark ageing” phenomenon also 

occurs under other circumstances, such as during the module lamination process, 

during damp heat tests or between pre-treatment and measurement. It is revers-

ible by light-soaking, although the recovery is not always complete. In general, the 

improvement is greater for poorer performing devices, but even high effi  ciency mod-

ules can show signifi cant gains. Light soaking in general can strongly infl uence the 

performance, even within very short time intervals (from seconds to hours).

It is diffi  cult to predict how a given CI(G)S material will behave and each device is 

somehow unique. Th e material’s actual composition or stoichiometry, the deposition 

temperature and thickness of the CdS buff er layer, the presence of gallium or sulphur 

in the quaternary (Cu(In,Ga)Se2) or pentenary (Cu(In,Ga)(Se,S)2) absorber systems, 

and the diff erent deposition processes (coevaporation, sputtering and selenization/

sulfurization, electrodeposition, etc.) can all infl uence the meta-stable state. Some 

devices [12,18] are highly sensitive to light soaking eff ects and even the exposure to 

light for fractions of second can alter the response, whereas others are less so.

Th e considerations for power measurements of CI(G)S modules are therefore as fol-

lows:

a) For one-off  calibration measurements of ex-production modules, a light 

soaking procedure such as that foreseen in IEC 61646 can be applied6, 

although care must be taken to minimise the time between the light soaking 

and the measurement (typically of the order of minutes); indeed a constant 

simulator or outdoor measurement set up may be preferable

6  For CI(G)S modules a similar stabilisation eff ect can also be reached using a current soak, by operating in forward bias 

at currents between Impp and Isc. However this method requires an adaptation of the current to the individual module to 

ensure uniformity of treatment, a criterion which is much easier to reach with light soaking, especially for diff erent module 

designs. On the other hand, a current soak can potentially be applied during dark processes e.g. during the lamination. 

Current soaking is not considered in the IEC 61646 standard.
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b) In the production process a pro-longed light soak is not a realistic option. Th e 

following is an example of one producer’s approach, based on measurements 

which showed that large variety Cu(In,Ga)Se2 modules with initial 

effi  ciencies between 10% and 12% stabilised aft er approximately 20 minutes. 

Consequently the producer uses a 20 minute light soak at an irradiance of 

100 W/m² under an array of fl uorescent tubes with true-lite spectrum before 

the fl asher measurement to determine the module power. For repeatable 

results it is important that the fl ash simulator measurements are performed 

immediately aft er the light soaking procedure. A temperature correction 

to 25°C is required, which in turn needs an accurate knowledge of the 

temperature coeffi  cients. It has been verifi ed that the fl asher measurements 

themselves do not cause signifi cant light soaking eff ects [13].

Cadmium Telluride

CdTe modules fresh from production show annealing on subsequent exposure to 

light. Before calibrating the modules this phase should be overcome, for instance by 

applying a light soaking procedure. Dark ageing may occur when modules are stored 

for prolonged periods, so that also in such cases a light soaking procedure is also 

needed. CdTe devices are generally less sensitive than CIS to short-term light soak-

ing eff ects. Nevertheless, the deposition process (close space sublimation, sputtering, 

etc.) of the absorber and of the buff er layer can infl uence the meta-stability of CdTe 

devices as well, so that diff erent devices may behave in a diff erent ways. Th e recom-

mendations of a major manufacturer [19,20] are as follows: 

 ● for shorter storage times (<5 days) to measure modules aft er manufacturing, 

3 kWh/m2 of light soaking is required under open circuit conditions.

 ● to rate modules following lengthy dark storage, 200 kWh/m2 of light soaking 

is required under MPP conditions; the characterisation should be carried out 

within 5 days of completion of this procedure.

 5.2.4 Reference Devices 

Th e meta-stability of many thin-fi lm technologies (see previous section) militates 

against their use as reference devices. As a result, fi ltered or non-fi ltered c-Si devices 

are normally favoured, bearing in mind the following:

 ● If a reference module is used for adjustment of the irradiance level of a solar 

simulator, this adjustment is only related to the part of the test area which is 

spanned by the active area of the reference module. Accordingly, ideally the 

size of the c-Si reference device should be similar to the size of the thin-fi lm 

test device. In particular, this applies for solar simulators in module produc-

tion where non-uniformity of irradiance normally lies above 2%. 

 ● Since c-Si reference devices are not spectrally matched to thin-fi lm technolo-

gies, there can be considerable spectral mismatch. For non-fi ltered xenon 

lamps for example, this be in the range of 30%. If spectral mismatch can-

not be calculated (IEC 60904-7) it can be estimated through outdoor/indoor 

comparison measurements of reference and test device. For that purpose, the 

ratio of short circuit currents recorded at natural sunlight (blue sky condi-

tions, diff use irradiance <30%, zenith angle of the sun <42°) and simulated 

sunlight can be taken as estimate. At present however there is no consen-



 51

Te
ch

no
lo

gy
-S

pe
ci

fi 
cI

ss
ue

s

sus on the trade-off  between small area, matched devices and large area 

unmatched devices for which the infl uence of non-uniformity eff ects has not 

been clarifi ed. 

 ● As the electrical performance of thin-fi lm modules can be subject to a con-

siderable spread (fabrication tolerance), care must be taken when using a 

fi xed spectral mismatch factor. If required, a range of spectral mismatch fac-

tor should be determined for thin-fi lm modules of diff erent effi  ciency classes. 

It should also be borne in mind that the spectral mismatch factor is infl u-

enced by spectral irradiance. In this regard, the change of the solar simulator 

lamp spectrum with operating time must be considered.

Solutions for three broad thin-fi lm technology classes are discussed below.

Amorphous Silicon

For a-Si it is generally recommended to use a c-Si reference device with a fi lter (such 

as KG1 glass) to mitigate spectral mismatch eff ects. Th is is particularly relevant when 

testing on pulsed solar simulators, especially those using a decaying pulse. Ideally the 

fi ltered device has all the desired properties of a c-Si reference (mainly stability, as 

long as the fi lter is stable against time and irradiance). Diff erent fi lters can be used, 

ranging from “strong” (giving the narrowest SR) through medium to “weak”, giving 

the widest SR range (Figure 14). Any of these fi lters match the SR of a-Si better than 

c-Si does, thereby reducing the spectral mismatch. But even in the case of apparent 

match between SRs, the spectral mismatch can remain signifi cant (several %) and 

therefore should be determined and corrected for in each measurement.

0
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c-Si + strong filter
c-Si + medium filter
c-Si + weak filter

Figure 14: Spectral response of a-Si from two manufacturers in 

comparison with c-Si and fi ltered c-Si cells; the SR of the manufacturer A 

device is best matched by a medium fi lter, whereas for the manufacturer B 

device the strong fi lter is more appropriate. 
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Reference devices based on c-Si with added fi lter would not normally be primary 

references, but secondary or working references. As such they would be calibrated 

against a c-Si primary reference. Th is calibration provides the traceability chain and 

needs to include a spectral mismatch correction. Concerning storage, handling, cali-

bration and traceability, a fi ltered c-Si reference device should be treated as any refer-

ence device, as described in IEC 60904-2. 

One possibility relevant to production control is a-Si device that is only used indoors, 

is stored at constant (room) temperature in the dark and only exposed to light from 

pulsed solar simulators. Such a device might be considered as stable and could there-

fore potentially be a reference, but strict conditions would have to be obeyed, namely 

control of storage temperature and cumulative irradiance. Furthermore it should 

never be exposed to natural sunlight, which excludes its use during outdoor mea-

surements and excludes its calibration with an outdoor method. Th e re-calibration 

interval should be signifi cantly shortened compared to c-Si reference devices and 

possibly it should be stabilized before each calibration by the procedure in IEC 61646.

Cadmium Telluride

Like other thin fi lm materials CdTe itself is not considered suitable for use in a refer-

ence device on account of its sensitivity to light soaking eff ects. One approach is to 

use a GaAs device, which has a similar band gap to CdTe. In fact the measured mis-

match is small, as is evident from the data in Table 4. Making a GaAs module capable 

of fulfi lling the requirements of IEC 60904-2 is however not a practical proposition. 

A solution may be to use such a spectrally well matched reference cell to verify the 

stability of a CdTe working reference module. Possible changes in its SR could be 

detected using the procedure described above. Th is would give the advantages of an 

optically and resistively matched module, provided the stability can be controlled to 

a level comparable to c-Si. An alternative is to use c-Si reference cells with a fi lter. 

Th e required spectral characteristics of such a fi lter are shown in Figure 15. Such 

fi lters are not generally available off -the-shelf, but could be developed for specialised 

requirements. In any case the long term stability of such fi lters needs to be verifi ed.
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Table 4 : Measured mismatch between GaAs reference devices and test devices in 

CdTe and c-Si using Class A and Class C simulator spectra.

Simulator spec-

trum

Reference device 

material

Test device Mismatch 

factor

Class A GaAs CdTe 1 1.004

Class A GaAs CdTe 2 1.005

Class A GaAs CdTe 3 1.004

Class A GaAs CdTe 4 1.004

Class A GaAs Si 1.031

Class C GaAs CdTe 1 0.953

Class C GaAs CdTe 2 0.984

Class C GaAs CdTe 3 0.962

Class C GaAs CdTe 4 1.016

Class C GaAs Si 1.307

CIGS

CIGS devices should not be used for as references due to their inherent material 

instability. Investigations of long term dark storage have shown variations in Isc of 

about 2.5%, dependent on the condition used. Instead it is possible to select a c-Si 

reference module with a very low spectral mismatch to CIGS (Figure 16). Of course 

the spectral quantum effi  ciency of CIGS devices is sensitive to the exact composition 

and a variation of production parameters may result in a device requiring a diff erent 

c-Si reference. 
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Figure 15 : Spectral response of a CdTe-device compared to the one of a c-si cell 

fi ltered using an ideal fi lter curve
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Figure 16 : Spectral quantum effi  ciency of CIGS and diff erent Si cells, 

indicating the suitability of the latter to be used as for reference devices 

for calibration of CIGS modules.
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5.3 Multi-Junction Thin Film Modules

Th is section addresses module technologies based on multi-layer a-Si or a-Si com-

bined with a nanocrystalline or “micromorph” layer. Th e main feature of such devices 

is that they are composed of layers connected both optically and electrically. Th ese 

layers are typically grown monolithically on a substrate and interconnected with tun-

nel diodes. Th e optical series (stacked) connection allows simultaneous use of diff er-

ent band gap materials for the sub-cell absorbers (layers) so as to optimise response 

to the incoming irradiance. On the other hand the electrical series connection means 

the current is limited by the sub-cell with the lowest photocurrent for the whole 

device under the prevailing spectral and irradiance conditions. A major challenge 

for calibration of multi-junction modules for a testing laboratory is that it is gener-

ally not known a priori which layer or sub-cell is current limiting at STC, whereas for 

measurements at a manufacturer this information is likely to be available. At present 

there is no IEC standard for calibration of multi-junction cells or modules, although 

ASTM E2236 [21] does address some aspects. Th e following sections aim to provide 

guidance on the measurement options available, focussing on the key issues of spec-

tral mismatch and reference devices. It is noted that pre-conditioning in principle fol-

lows the recommendations made for a-Si modules in section 5.2.3, while capacitive 

eff ects are judged medium i.e. a sweep time of greater than 10 ms is desirable. 

 5.3.1 Spectral Mismatch

Two approaches are currently being used to address the fact that, for series-con-

nected multijunction devices, all IV-parameters depend on the photocurrent ratio of 

the individual sub-cells. 

a) Constant photo-current ratio approach

Th is approach is based on the assumption that for a precise measurement of the total 

current of a MJ device at STC, the same photocurrent ratio for the sub-cells or layers 

must be reached under the simulator as under the standard spectrum. Th e photo-

current ratio is expressed as: 

   

I top
SIM

I top
STC

I bottom
SIM

I bottom
STC

 ==  = K= K
 

   

(5)

where: I top,bottom = ∫SRtop,bottom (λ) . ESIM,STC (λ) dλ
SIM,STC

 and I top,bottom
SIM,STC

is the short circuit 

current of the top/bottom cell under the simulator/standard spectrum. If the sub-

cells or layers are current matched for the standard spectrum the ratio is k = 1. 

Assuming the relative spectral responses of the sub-cells are known or can be mea-

sured [27, 26] and with the condition that each sub cell produces the same current 

under the simulator as for the reference spectrum,

    I 
j
      =   I 

j
     (6)

       

SIM      

       

STC
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a linear equation system holds. 

    ∑ Ak ∫ srj (λ)ek (λ)dλ = ∫ srj ESTC (λ)dλ  (7)

    
k

Where ek(λ) are the relative spectral distributions of k individual lamp sources. Solv-

ing this system results in solutions Ak for the lamp power adjustment in a multi-lamp 

simulator. 7 With these the diff erent lamp sources can be adjusted so that a suitable 

reference cell with spectral response SRRC irradiated with the partial spectrum ek(λ) 

delivers the current:

    I RC = Ak ∫SRRC (λ)ek (λ)dλ   (8)

    

k

      

Th is method is used at ISE to measure multijunction solar cells on small areas of 

about 4x8cm². Similar methods are used for larger areas at AIST [28].

b) Limiting Cell Mismatch Correction Approach

In this approach [29] a single light source (either natural sunlight or an indoor simu-

lator) is used for the power measurement, with the precondition that the limiting 

cell/layer of the module should be the same as that under STC conditions 8. IEC 

60904-7 describes the procedure to correct the error introduced due to the mismatch 

between the test spectrum and the reference spectrum and that between the spectral 

responses of the reference cell and of the device under test. In the case of a tandem 

module the SR of the two sub-cells is measured in turn by illuminating the with an 

appropriate coloured bias light to saturate the response one of the sub-cells, allowing 

measurement of the SR of the other (now current limiting) sub-cell. Th e mismatch 

factor (MMF) 9 is given by:

 MMF =
 ∫SR (λ)EAM1.5 (λ)dλ 

..
 ∫SRRE ƒ (λ)EL (λ)dλ  

 ∫SR (λ) EL (λ)dλ ∫SRRE ƒ (λ) EAM1.5 (λ)dλ  
(9)

where SRRef(λ) is the spectral response of the reference cell used. 

In the case of a multijunction device the spectral mismatch correction is made with 

the MMF value for the current limiting junction under the irradiance conditions 

used for the I-V measurement. Using Equation 6, the MMF values for each of the 

cells, top and bottom, are obtained by using the spectral irradiance distribution EL(λ) 

of the simulator, or of the natural sunlight, and the spectral response (SR) of the lim-

iting sub-cell. Ultimately the MMF value of the limiting junction is used for calculat-

ing the corrected I-V characteristics for the module, which take account the spectral 

mismatch to the EAM1.5(λ) spectral distribution. 

7  Using a single source simulator with adjustable fi ltering and intensity would off er another possibility to adapt the 

spectral irradiance; however a patent protects the use of movable fi lters for the adjustment of the spectral irradiance of a 

solar simulator and thus its use in a standard is not an option.

8  This information may be available from the manufacturer or must be established based on spectral response mea-

surements on the module itself or a sub-module or cell with an identical manufacturing route and physical characteristics.

9  MMF = 1/MM as defi ned in the IEC standard due to historical reasons. However, the fi nal results are identical
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It is possible to determine the limiting junction from the spectral response measure-

ments. Th is is done by calculating fi rst the short-circuit current Isc for each junction, 

top and bottom, from the following equation

   Isc = nAtest∫SR (λ) EL (λ)dλ    (10)

where n is the number of cells, Atest is the cell area, EL(λ) is the spectral irradiance of 

the simulator where the I-V measurements are performed, and SR(λ) is the spectral 

response of each junction cell. Th e Isc values obtained from equation (10) have to be 

multiplied by a scaling factor,  

         I 
meas 

min Iscsc
SF = sc

      (11)

which is defi ned as the ratio of the measured Isc from I-V measurements to the
 

minimum 

Isc calculated from equation (10). Th is scaling is necessary since equation (10) uses the 

relative spectral response of each junction instead of the absolute one. Th e smaller short-

circuit current value obtained aft er the scaling determines the limiting junction.

An important assumption throughout this procedure for correcting the measured 

I-V parameters of a multi-junction module using the MMF is that the limiting junc-

tion has to be the same under the standard spectral irradiance as defi ned in IEC-

60904-3 and under the I-V measurements. In case where the spectral diff erence of 

the simulator and AM1.5g is too large, the current-limiting junction may be diff erent 

under each measurement and consequently the mismatch correction would refer to 

the short-circuit current given by a diff erent junction. A measurement and spectral 

mismatch correction with a diff erent solar simulator should be done in this case.

 5.3.2 Reference devices

Using a multijunction module from production appears not suitable. Apart from con-

siderations of stability, if the diff erent junctions are approximately current matched, 

any shift  in spectral irradiance may shift  the current matching point between sub-

cells i.e. change the limiting sub-cell.

For reference cells there are diff erent possibilities. Th e fi rst is to use a reference with a 

wide spectral response range that covers the whole spectral response range of all mul-

tijunction sub cells. A crystalline silicon solar cell is oft en appropriate. Th e advantage 

is clearly the availability in each laboratory of a well-calibrated and stable reference. 

Th e disadvantage lies in the quality of spectral match to each sub cell, which may be 

poor. Th e second possibility is to use an individual spectrally matched reference for 

each sub cell. Th is leads to a longer and more elaborate measurement procedure in 

practice. For cell technologies which produce cells with stable properties over time 

customised “component” cells are advantageous. Th ese have the same structure as the 

multijunction cells with all absorbing layers but only one pn-junction.

If such specially made cells are not suffi  ciently stable or are not available, fi ltered 

silicon solar cells are a good alternative. Due to the diff erent technologies on the 

market for thin fi lm multijunction modules several kinds of fi ltered reference cells 

are necessary. On the other hand, the design of a fi ltered reference cell with specifi c 

spectral properties is a diffi  cult task and depends on availability and stability of fi lters. 
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At present the only viable compromise appears to be the use of a c-Si module to set/

control the irradiance intensity, in spite of the high spectral mismatch.

A further factor to consider for multi-junction thin-fi lm devices is that current mis-

match between the junctions may be diff erent for the spectral irradiance during IV 

measurement compared to that under the standard AM1.5 spectrum. Care should be 

taken as this eff ect can cause excessive measurement errors, also of fi ll factor. Depend-

ing on the characteristics of the solar simulator (adjustment range of lamp power, 

distance of lamp to test area, optical fi lters etc.) the eff ective irradiance for thin-fi lm 

modules can lie considerably below or above 1000 W/m² so an irradiance correction 

of the measurement is required. A low uncertainty related to irradiance correction 

assumes that the correct module parameters are used. Th ese can be diff erent for thin-

fi lm modules of diff erent effi  ciency class and should be carefully evaluated.
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6. Traceability 
and Uncertainty

6.1 Basic Considerations

A prime requirement for each reliable measurement conveying a legal validity is that 

there is an unbroken traceability chain to an international primary standard and a 

documented uncertainty calculation for each transfer step in the chain. Th e traceabil-

ity chain for the measurement of IV characteristics of PV modules of all laboratories 

participating in IP Performance was analysed and evaluated in D1.4.1 “Actual prac-

tise and defi ciencies of PV calibration traceability”. Part of the documentation of an 

unbroken traceability chain is an analysis of the measurement uncertainties in each 

calibration transfer from primary standards down to PV modules. Th e uncertainty 

calculations in the participating laboratories was examined in D1.4.2. “Principles of 

uncertainty analyses and evaluation of the traceability chain”. In these guidelines the 

main points are summarised and the implications for industry PV measurements 

addressed.

6.2 Traceability

Th e measurement of IV characteristics of PV devices involves a number of measure-

ments, such as voltage and current at the module, temperature and irradiance. All of 

these (except the last) are well established measurements, which are not specifi c to 

PV. Th ere are numerous calibration services available, and establishing a traceability 

chain for these measurements does not pose any particular problem. As far as irradi-

ance is concerned, however, the situation is much more complex. 

Th e prime objective of a PV reference device is to measure the irradiance level of 

around 1000 W/m2 of the (simulated) sunlight. For reasons of similarity of devices 

(minimizing the spectral mismatch) and the response time required on pulsed solar 

simulators, PV reference devices are used for the irradiance measurements in labo-

ratories and industry.

Th e traceability chain of PV irradiance sensors has been recently published in IEC 

60904-4. Th is standard describes the traceability chain from international primary 

standards for irradiance to PV reference devices. It proposes possible methods for 

the most crucial transfer in the chain, namely the calibration of primary PV refer-

ence cells against international standards for irradiance, including an indication of 

uncertainty budget. Th e further transfer between diff erent PV reference devices is 

covered by IEC 60904-2. 

Historically the World Photovoltaic Scale [33,34,35] was established. It inter-com-

pared diff erent transfer methods from international irradiance standards to PV 

devices. In the 1990s the spread in the data was considerable leading to a fi nal com-

bined expanded uncertainty U95% (k=2) of ±1.9% for the calibration value of the 
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primary PV reference cells. Further eff orts since 2000 have improved the situation. A 

preliminary analysis of some of the data has shown that the spread between calibra-

tion methods using diff erent traceability chains has been reduced to about ±1.0% 

(U95%).

According to IEC 60904-4 the traceability for solar irradiance sensors requires to tie 

the calibration value to SI units in an unbroken and documented chain of calibration 

transfers including stated uncertainties. Th is means that any instrument required and 

used in any transfer procedure also has to be an instrument with an unbroken trace-

ability chain to the respective SI unit. An explicit and detailed uncertainty analysis is 

required for each transfer step. Repeatability should be documented, either through a 

laboratory quality control system or by inter-comparison to other laboratories. Th ere 

should also be inherent precision due to a limited number of intermediate transfers 

(a permissible number of transfer steps is not given). It should be mentioned here 

that within the European Union, all quantities which infl uence a commercial value 

must be based on an unbroken chain of transfers to SI units.

6.3 Measurement Uncertainty

Th ese guidelines are intended to provide a general introduction to measurement 

uncertainty for the determination of electrical characteristics of PV devices. Th e main 

factors to consider when determining the performance from a measurement of the 

current-voltage (IV) characteristics of PV modules are presented. A full uncertainty 

calculation needs to be performed for each measurement procedure, the instruments 

used and the subsequent data analysis. As this requires detailed information and is 

specifi c to each laboratory, such a calculation is beyond the scope of these guidelines. 

An example of such a detailed analysis at a reference laboratory has been published 

recently [36]. 

 6.3.1 Contributing Factors

In the determination of electrical performance of PV modules a number of measure-

ments are taken and conditions applied, all of which have an infl uence on the fi nal 

result and its uncertainty. Th e main groups are uncertainties related to electrical mea-

surements, temperature and optical eff ects, the reference device and the connections 

(cabling). Furthermore there are contributions from any step of data analysis and last 

not least there might be (signifi cant) contributions from the preconditioning, insta-

bility and response of the PV device itself. Th e latter are beyond the scope of these 

guidelines, but should be considered before doing any measurement as potentially 

their eff ects might be larger than any other component contributing to uncertainty. 

Table 5 shows the main groups and associated contributions that might be consid-

ered.
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Table 5 : Factors to be considered in uncertainty analysis.

Parameter Items to be considered

Electrical uncertainty – Data acquisition (I and V)

– Shunts for current measurement

–  Irradiance measurement from reference 

device

Temperature uncertainty – Indicators

– Measurement condition with respect to STC 

– Temperature non-uniformity in test device

Optical uncertainty –  Spatial non-uniformity of irradiance in the 

target plane

–  Orientation of reference and device under 

test with respect to optical axis

–  Alignment of reference and device under 

test with respect to each other

Reference device uncertainty – From calibration certifi cate

– Reference cell drift (since last calibration)

Fill Factor uncertainty due to connection/cabling

Repeatability – Within one set of measurements

–  Periodic measurements on a stable sample 

including “system drift”

Data analysis –  Correction to reporting conditions 

(normally STC) 

– Irradiance

– Temperature

– Spectral mismatch
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 6.3.2 Calculation Principles

Th e principle of the uncertainty calculation is to look at all measured variables (mea-

surands) and conditions which contribute to the fi nal measurement result. For each 

variable a measurement uncertainty has to be established and the transfer to the fi nal 

uncertainty calculated based on the component’s contribution to the fi nal measure-

ment result. 

Th e uncertainty of a measurement is normally expressed as an interval around the 

given result and the probability of fi nding the true value within that interval. Th e 

probability is also called confi dence level. For a Gaussian distribution an interval of 

±σ (standard deviation) gives a confi dence level of 68.3%, whereas ±2σ corresponds 

to a confi dence of 95.4%. Th e most widespread confi dence level is U95% (giving 95% 

confi dence) corresponding to two standard deviations or a coverage factor k = 2 

(strictly speaking k = 1.96 for U95% and a Gaussian distribution). A single standard 

deviation (k=1) is also called standard uncertainty whereas the expanded uncertainty 

corresponds to U95% (k=2). In order to combine the uncertainties associated with 

diff erent measurement variables they all have to be on the same confi dence level and 

distribution, commonly standard uncertainties with Gaussian distribution. For con-

fi dence distributions which diff er in shape from a Gaussian distribution, a correction 

factor is applied. If the variables are independent, the combined standard uncertainty 

can be calculated as the geometrical mean of all single components (i.e. the square 

root of the sum of squares). Otherwise the correlation has to be taken into account. 

Th e combined standard uncertainty is then multiplied by the coverage factor (i.e. k=2 

for U95%) to obtain the combined expanded uncertainty. It is oft en easiest to calcu-

late the uncertainties as percentage of measurand and quote the combined expanded 

uncertainty also as such. Th rough multiplication with the measurement result it can 

easily be transformed into absolute values with the same units as the measurand.

A number of required parameters will normally be provided from external sources, 

for example the calibration value and its uncertainty for the reference device. As long 

as the conditions for traceability are fulfi lled these values can be used as input. Other 

parameters depend on the measurement procedure and condition and have to be 

evaluated and determined in each laboratory. 

As the combined uncertainty is calculated as the square root of the sum of squares of 

all components, it can be reduced mainly be reducing the major components, whereas 

a reduction of a minor component might not be visible in the combined uncertainty. 

Hence a detailed uncertainty analysis is also useful as indication which parts of the 

measurement procedure and conditions are critical and should be well controlled or 

improved. Any measurement result needs to be quoted not only as value and unit but 

the uncertainty interval and its confi dence level with it. Without these a measure-

ment result has no formal validity.

From an analysis of the measurements in the laboratories participating in Perfor-

mance IP it emerged that the combined expanded uncertainty of the maximum 

power of PV modules was between 1.6% and 3%. Th e electrical and temperature 

related uncertainty contributions were negligible, whereas those originating from 

optical, reference cell and spectral mismatch correction were the major contributors 

to the fi nal result:
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 ● Th e optical uncertainty arises when laboratories transfer the irradiance value 

from a (small) reference cell to a (much larger) PV module. In such a case the 

contribution of spatial non-uniformity is signifi cant, even for class A simula-

tors. 

 ● Th e uncertainty associated with a reference cell is linked to its traceability. 

 ● For the spectral mismatch, the uncertainty is linked to the complexity of its 

determination, since it requires the SR of the reference device, the SR of the 

PV module (not easily obtained) and more importantly the spectral irradi-

ance distribution of the solar simulator.

In industry the reference device would normally be a module calibrated by a reference 

laboratory, with a stated uncertainty which could be used in subsequent uncertainty 

analysis as an input parameter. In such a case the eff ects of spatial non-uniformity 

and spectral mismatch would then become negligible.

6.4 Good Practice

Traceability

All measurement instruments require a periodic, traceable calibration, duly docu-

mented with a calibration certifi cate. Th e certifi cate should be issued by an ISO 17025 

accredited laboratory and should include measurement uncertainty and demonstra-

tion of traceability. Special attention should be given to the reference irradiance sen-

sor, as it is one of the most critical components in the determination of electrical 

performance of PV devices. 

Reference devices:

As discussed in previous sections, there are various considerations to be made in 

choosing a PV reference device. However in the present context the only requirement 

is traceability. For almost all laboratories the traceability chain of the reference device 

will be provided by an external organisation in the form of the calibration (including 

calibration certifi cate with stated uncertainty). For the receiving laboratory this will 

be the highest available reference and the number of such devices in any laboratory 

will be limited. Th e use of these references in daily work will minimise uncertainty, 

but brings the risk in case of damage during handling or degradation due to frequent 

use. Th erefore it is common to transfer the calibration to working references for daily 

use and keep the higher level reference stored safely. Th is requires an in-house proce-

dure for the calibration transfer according to the criteria outlined above. Th is might 

seem to be an extra burden, but such procedures (including traceability and uncer-

tainty calculation) need to be in place for measurements anyway (at least for the 

transfer between nominally identical devices). 

Th e periodic recalibration of reference devices should be foreseen, both for the cali-

brations by external organisation and those performed in house.

Th e reference device can be a PV cell or module. For industry the choice of a refer-

ence device of same size and technology to the PV devices to be measured is prefer-

able. Th e reference needs to be stable, handled and stored with care and regularly 

checked, also in the periods between the periodic recalibrations. 
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Uncertainty

 ● A detailed uncertainty analysis of the implemented measurement procedure 

needs to be elaborated. 

 ● Th e determined uncertainties also need validation. One possibility is an 

inter-comparison with other laboratories. Another is the repetition of the 

same measurement at one laboratory. For this there are various possibilities, 

such as making several consecutive measurements without any change, dis-

connecting the PV module in between measurements, changing instruments 

and reference device, repeating on diff erent days and with diff erent opera-

tors. Based on the variations observed between such repeated measurements, 

a specifi c uncertainty just for the reproducibility can be verifi ed for those 

components in the uncertainty calculation which were varied between the 

measurements. 

 ● To improve the uncertainty, the major components identifi ed in the uncer-

tainty calculation should be addressed. 

 ● It is always best to measure near the reporting conditions, normally STC. 

Any correction introduces additional uncertainty, since in most cases these 

vary proportionally. Data analysis and correction procedures should follow 

international standards, and their implementation needs to be documented 

and validated. 

 ● Th e solar simulator used for the measurements should be characterized aft er 

installation and at regular intervals, keeping in mind that also a class AAA 

simulator still might require explicit correction of measured IV characteris-

tics as per IEC 60891. 

 ● All measurements and data analysis should only be entrusted to trained oper-

ators. 

 ● Control measurements to verify the measurement set-up and the reference 

devices should be performed regularly, as well as the comparison in inter-

comparison with external laboratories. 

 ● Characteristics of the device under test (stability, dependence on pre-condi-

tioning and possible sweep speed eff ects on pulsed solar simulators) need to 

be assessed before making a performance measurement, because potentially 

they are larger than any measurement uncertainty. 
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7. Quality Control
and Data Handling

7.1 General Measures 

Performance measurements should be conducted in the framework of an organisa-

tional system that promotes a culture for high precision, reliable data. Th is is oft en 

realised in a quality management system i.e. one which embodies the principles of a 

“plan-do-check-correct” philosophy, with regular auditing and improvement/correc-

tive measures. Key features typically include:

 ● Clear and documented defi nition of the procedures and responsibilities, typi-

cally involving a hierarchical system of implementation and monitoring. 

 ● A well-organised procedure for documenting the work on each test station; 

for this it is common to use operation and maintenance logbook divided into 

daily, weekly, monthly and annual reporting units in order to track the regu-

lar technical checks, the reproducibility checks, the sensor states, environ-

mental conditions, changes or adjustments to the solar simulators, etc. 

 ● Tightly controlled use reference devices

 ● Systematic approach to ensuring the traceable calibration of all temperature, 

radiation and voltage sensors, and organization and control of compliance 

with the appropriate calibration intervals. Th e implementation of the calibra-

tion itself shall be documented. 

7.2 Training

 ● Th e personnel performing measurements should have an adequate level of 

training, relating both to photovoltaics and to measurement technology itself 

and should be reinforced by a recognised programme of continual profes-

sional development.

 ● Th e level of training and preparation of the personnel should comply with 

the requirements foreseen by the manufacturer of the measuring equipment. 

It makes sense to ensure an intensive interaction between the equipment 

manufacturer and testing staff  on site to optimise operation. Th e equipment 

setting and soft ware parameters should be documented for the various refer-

ence devices and production module types. 

 ● Participation to internal or external intercomparsion exercises can be 

extremely useful both to optimise procedures and to ensure that a high level 

of measurement quality is maintained. 
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 ● Attention should also be given to establishing a good understanding of the 

procedures used to correct measurement data to STC conditions (tempera-

ture and radiation) at the maximum power point, rather than relying on a 

“black-box” approach. For instance when alternative correction procedures 

are foreseen in standards, selection of appropriate methods for a specifi c 

technology relies on proper staff  training, as errors can have signifi cant con-

sequences. 

7.3 Measurement Uncertainties

Quantifi cation of uncertainty is a requirement for calibration measurements. It is 

critical for all power measurements systems to gain a proper understanding of the 

infl uence of factors such as reproducibility, sensor uncertainties for temperature and 

radiation, uncertainty in data acquisition and uncertainty in corrections to STC. Th is 

is a key tool to identifying weaknesses and implementing the improvement needed 

to raise overall data reliability. 

7.4 Data archiving production documentation 

Th e goal should be a comprehensive organization of the input and output data, 

including IV data, temperature and irradiance values, module identifi cation data, 

reference device and system settings for each measurement. It is recommended that 

such information is stored in both processed and non-processed forms.
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8. Summary and 
Recommendations 

Precise and reliable power measurements are essential to the PV industry and to 

investors. Th ese “PERFORMANCE Project Guidelines” present current best-prac-

tices for determination of maximum output power at standard test conditions (as 

opposed to the operating conditions). Particular attention is given to emerging tech-

nologies, such as high effi  ciency silicon and thin-fi lm, which have high potential but 

also require adaptations of the measurement procedures already standardised for 

crystalline silicon devices. 

Crystalline silicon modules

Procedures for output power characterisation are already extensively addressed in 

IEC und EN standards. Intercomparisons between specialised laboratories show that 

repeatability is within ±2%, which corresponds approximately to the level of mea-

surement uncertainty. Industrial practices for measurements can however be less 

reliable. Issues highlighted by these guidelines include: 

 ● Quality of the light source: this is oft en at the root of deviations in measure-

ment accuracy; recommendations for solar simulators include:

 ○ Use of class AAA simulators, typically equipped with xenon fl ash lamps

 ○ Document spectral irradiance and uniformity in the test area. 

 ○ Regular performance checks 

 ○ Eff ective irradiance close to 1000 W/m² to keep the irradiance correction 

low. 

 ● I-V measurements: while the electronic load equipment is frequently pro-

vided by the equipment manufacturer, close attention is needed to the tem-

perature control of the module and to the connections. For STC measure-

ments modules from production shall be given suffi  cient time to adjust to 

ambient, bearing in mind that the PMAX error is approximately 0.5% per oK. 

Th e uniformity of the temperature distribution shall be verifi ed, and a mini-

mum 2 temperature sensors shall be used. Cable adapters shall be regularly 

checked and replaced as frequent use to connect modules to the 4-wire input 

terminals of the I-V load will cause deterioration of the terminals/clamps. 

 ● Reference modules should respect the criteria set out in IEC 60904-2, with 

respect to size, stability, handling and storage. Special attention is required for 

the connections, as standard PV elements are not designed for repeated use. 

Adjustments of solar simulators with a reference module may use ISC or PMAX 

as a calibrating parameter; there are pros and cons to either but in general all 

performance parameters (PMAX, ISC, VOC, FF) should within ±1%. 

 ● Traceability and uncertainty: for measurements with legal validity an unbro-

ken traceability chain to an international primary standard is required and a 

documented uncertainty calculation.
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High effi  ciency silicon modules 

High effi  ciency c-Si modules – in the form of either back contact or HIT cells – are 

usually highly capacitive and power measurements can be infl uenced by sweep-

time eff ects when the IV scan acquisition times are too fast (generally already below 

200  ms). Th e capacitive characteristics depend on the specifi c technology and for 

calibration purposes the appropriate I-V sweep speed needs to be established experi-

mentally, usually by performing a sweep in both directions. Outdoor measurements 

can avoid these issues by using very slow sweeps e.g. 1 second duration. For fl ash 

simulators use of long-pulse or multi-fl ash methods can be considered.

Th in fi lm modules

While as yet there are no specifi c calibration standards for thin fi lm modules, current 

“good practice” is summarised below for four generic technology areas: a-Si, CdTe, 

CIS and multijunction devices. It is however stressed that the performance of a given 

module type can be sensitive to the specifi c chemical composition and to the man-

ufacturing and conditioning history. Recent intercomparisons between specialised 

laboratories indicate that repeatability on Pmax is at the level of ±5%, although the 

individually quoted levels of uncertainty may be less than this. 

 ● Amorphous silicon modules: 

 ○ Pre-conditioning: light soaking is required to reach a stabilised state, using 

a procedure such as that in the IEC 61646 standard. However since this 

allows a wide range of module temperature (40-60oC), it should verifi ed 

that the conditions used are adequate to achieve a state representative of the 

expected operational temperatures. 

 ○ Reference devices: fi ltered crystalline cells are recommended to minimise 

spectral mismatch while maintaining high stability. For production refer-

ences, it may be possible to use amorphous silicon modules provided these 

are stored in the dark at ambient temperature or below, and their light 

exposure is minimised.

 ○ Capacitive eff ects are considered to be at a medium level and appropriate 

checks on sweep speed need to be made.

 ● Cadmium telluride modules: 

 ○ Pre-conditioning: aft er production or aft er periods stored in the dark, 

CdTe modules require light soaking to bring performance up to the level 

expected in operation. 

 ○ Reference devices: fi ltered crystalline cells are recommended, but CdTe 

modules may be used as production references if their stability can be 

cross-checked with appropriate reference cells.

 ○ Capacitive eff ects are considered to be low, so fl ash and sweep times as for 

crystalline silicon can be used.
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 ● CI(G)S modules:

 ○ Pre-conditioning: a light soaking procedure is required but care must be 

taken to minimise the time between the light soaking and fl ash simulator 

measurements due to the sensitivity of these devices to short term dark age-

ing eff ects; for calibration measurements a constant simulator or outdoor 

measurement set up may be preferable.

 ○ Reference devices: it is recommended to use c-Si reference module with a 

very low spectral mismatch to the device being tested.

 ○ Capacitive eff ects are considered to be low, so sweep times as for crystalline 

silicon can be used.

 ● Multi-junction modules (typically tandem/triple a-Si, a-Si/μc-Si) 

 ○ Pre-conditioning: similar procedures as for amorphous silicon can be 

applied, with adequate checks that stability is reached. 

 ○ Spectral mismatch correction: the spectral response of the two layers must 

be established to allow correction to STC conditions; this is a non-trivial 

undertaking.

 ○ Reference devices: fi ltered crystalline cells are recommended to minimise 

spectral mismatch while maintaining high stability. 

 ○ Capacitive eff ects: considered to be medium and appropriate checks on 

sweep speed need to be made.

Finally, it is stressed that the quality of any power measurements is based on the use 

of appropriate and calibrated equipment operated by well-trained staff , in the frame-

work of an organisational system that promotes a culture for precision. 
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